000917381 001__ 917381
000917381 005__ 20230123101854.0
000917381 037__ $$aFZJ-2023-00595
000917381 041__ $$aGerman
000917381 1001_ $$0P:(DE-HGF)0$$aSchultes, S$$b0$$eCorresponding author
000917381 1112_ $$aBotanik-Tagung International Conference of the German Society for Plant Sciences 2022$$cBonn$$d2022-08-29 - 2022-09-02$$wGermany
000917381 245__ $$aCombining an 11C and 13 C labelling approach to track photosynthates into the root system andrhizosphere microbiota of maize
000917381 260__ $$c2022
000917381 3367_ $$033$$2EndNote$$aConference Paper
000917381 3367_ $$2DataCite$$aOther
000917381 3367_ $$2BibTeX$$aINPROCEEDINGS
000917381 3367_ $$2DRIVER$$aconferenceObject
000917381 3367_ $$2ORCID$$aLECTURE_SPEECH
000917381 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1673846408_18271$$xAfter Call
000917381 520__ $$aPlants transport substantial amounts of fresh photosynthates into their root system. From there, the photosynthates are par-tially released into the rhizosphere by rhizodeposition, which promotes interactions with microorganisms. Little is known aboutthe spatial distribution of photosynthates within the root system, and how these distributional patterns relate to rhizodepositionand the assembly of rhizosphere microbial communities. To assess root-internal photosynthate distribution, we labelled youngmaize plants with short-lived 11CO2 on days 14 and 21 after sowing. 11C allocation within the root system was then visualized usingnon-invasive positron emission tomography (PET) in combination with magnetic resonance imaging (MRI). The same plants werelabelled with the stable isotope 13CO2 for 6 consecutive days in order to trace the path of photosynthates into the rhizosphereand microbiota. Roots and rhizosphere soil were harvested on day 22, using the previously acquired PET/MRI scans to target rootregions with distinct photosynthate levels. Rhizosphere organisms that consumed 13C-labelled photosynthates were identifiedby DNA stable isotope probing followed by amplicon sequencing. Isotope ratio mass spectrometry (IRMS) was used to quantify13C in rhizosphere soil. The visualization and quantification of root-internal 11C by PET combined with MRI revealed an increasedaccumulation of photosynthates in root tips, particularly in young crown root tips. This pattern was partially reflected in thedistribution of 13C in the rhizosphere as determined by IRMS. Previous results of PET/MRI guided rhizosphere sampling alreadyrevealed a slight effect of photosynthate distribution within the root system on the local microbial community structure. Now,this effect is being tested with a more sensitive method that focuses on the direct microbial consumers of photosynthates bycombining 11CO2 labelling with 13C stable isotope probing. During the conference, the results of microbial community analysis willbe discussed, along with the associated root-internal and -external photosynthate allocation.
000917381 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000917381 7001_ $$0P:(DE-Juel1)171304$$aHinz, Carsten$$b1$$ufzj
000917381 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b2$$ufzj
000917381 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b3$$ufzj
000917381 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b4$$ufzj
000917381 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b5$$ufzj
000917381 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b6$$ufzj
000917381 7001_ $$0P:(DE-HGF)0$$aBauke, S$$b7
000917381 7001_ $$0P:(DE-HGF)0$$aWatt, M$$b8
000917381 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b9$$ufzj
000917381 7001_ $$0P:(DE-HGF)0$$aKnief, C$$b10
000917381 909CO $$ooai:juser.fz-juelich.de:917381$$pVDB
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171304$$aForschungszentrum Jülich$$b1$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b2$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b3$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b4$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b5$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b6$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b8$$kFZJ
000917381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b9$$kFZJ
000917381 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000917381 9141_ $$y2022
000917381 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000917381 980__ $$aconf
000917381 980__ $$aVDB
000917381 980__ $$aI:(DE-Juel1)IBG-2-20101118
000917381 980__ $$aUNRESTRICTED