000917388 001__ 917388
000917388 005__ 20230123101927.0
000917388 0247_ $$2doi$$a10.1101/2021.02.15.431234
000917388 0247_ $$2Handle$$a2128/33587
000917388 037__ $$aFZJ-2023-00602
000917388 082__ $$a570
000917388 1001_ $$00000-0002-8064-6412$$aBueno, Diones$$b0
000917388 245__ $$aNECAB2 participates in an endosomal pathway of mitochondrial stress response at striatal synapses
000917388 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2021
000917388 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1673615981_4157
000917388 3367_ $$2ORCID$$aWORKING_PAPER
000917388 3367_ $$028$$2EndNote$$aElectronic Article
000917388 3367_ $$2DRIVER$$apreprint
000917388 3367_ $$2BibTeX$$aARTICLE
000917388 3367_ $$2DataCite$$aOutput Types/Working Paper
000917388 520__ $$aSynaptic signaling depends on ATP generated by mitochondria. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction and thus requires efficient mitochondrial quality control and repair. We found that global knockout of the neuronal calcium-binding protein 2 (NECAB2) in the mouse causes loss of striatal synapses and behavioral phenotypes related to striatal dysfunction such as reduced motivation and altered sensory gating. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller. They are characterized by increased respiration and superoxide production resulting in oxidative stress. This accumulation of dysfunctional mitochondria is caused by a defective assembly of mitochondria with early endosomes in a pathway that involves the small GTPase Rab5 and its guanine nucleotide exchange factor Alsin/ALS2. NECAB2 therefore participates in an endosomal pathway of mitochondrial stress response and repair important for striatal function.
000917388 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000917388 588__ $$aDataset connected to CrossRef
000917388 7001_ $$0P:(DE-HGF)0$$aDey, Partha Narayan$$b1
000917388 7001_ $$0P:(DE-HGF)0$$aSchacht, Teresa$$b2
000917388 7001_ $$0P:(DE-HGF)0$$aWolf, Christina$$b3
000917388 7001_ $$0P:(DE-HGF)0$$aWüllner, Verena$$b4
000917388 7001_ $$00000-0002-8361-8134$$aMorpurgo, Elena$$b5
000917388 7001_ $$0P:(DE-HGF)0$$aRojas-Charry, Liliana$$b6
000917388 7001_ $$0P:(DE-HGF)0$$aSessinghaus, Lena$$b7
000917388 7001_ $$0P:(DE-HGF)0$$aLeukel, Petra$$b8
000917388 7001_ $$0P:(DE-HGF)0$$aSommer, Clemens$$b9
000917388 7001_ $$0P:(DE-HGF)0$$aRadyushkin, Konstantin$$b10
000917388 7001_ $$0P:(DE-HGF)0$$aSchäfer, Michael K. E.$$b11
000917388 7001_ $$0P:(DE-HGF)0$$aFlorin, Luise$$b12
000917388 7001_ $$0P:(DE-HGF)0$$aGomez-Zepeda, David$$b13
000917388 7001_ $$00000-0003-3034-0017$$aTenzer, Stefan$$b14
000917388 7001_ $$0P:(DE-HGF)0$$aBaumgart, Jan$$b15
000917388 7001_ $$0P:(DE-HGF)0$$aStamm, Paul$$b16
000917388 7001_ $$0P:(DE-HGF)0$$aDaiber, Andreas$$b17
000917388 7001_ $$0P:(DE-HGF)0$$aHorta, Guilherme$$b18
000917388 7001_ $$0P:(DE-HGF)0$$aNardi, Leonardo$$b19
000917388 7001_ $$0P:(DE-HGF)0$$aVasic, Verica$$b20
000917388 7001_ $$00000-0002-5514-1922$$aSchmeisser, Michael J.$$b21
000917388 7001_ $$0P:(DE-HGF)0$$aHellwig, Andrea$$b22
000917388 7001_ $$0P:(DE-Juel1)131712$$aOskamp, Angela$$b23$$ufzj
000917388 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b24$$ufzj
000917388 7001_ $$00000-0001-7337-6007$$aAnand, Ruchika$$b25
000917388 7001_ $$0P:(DE-Juel1)171721$$aReichert, Andreas$$b26
000917388 7001_ $$0P:(DE-HGF)0$$aRitz, Sandra$$b27
000917388 7001_ $$0P:(DE-HGF)0$$aPeper, Jonas$$b28
000917388 7001_ $$00000-0003-2810-9828$$aSilies, Marion$$b29
000917388 7001_ $$00000-0002-1372-3297$$aFrauenknecht, Katrin B. M.$$b30
000917388 7001_ $$00000-0002-8774-0057$$aMethner, Axel$$b31
000917388 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2021.02.15.431234$$tbioRxiv beta$$y2021
000917388 8564_ $$uhttps://juser.fz-juelich.de/record/917388/files/2021.02.15.431234.full.pdf$$yOpenAccess
000917388 909CO $$ooai:juser.fz-juelich.de:917388$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917388 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131712$$aForschungszentrum Jülich$$b23$$kFZJ
000917388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b24$$kFZJ
000917388 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000917388 9141_ $$y2022
000917388 920__ $$lyes
000917388 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000917388 980__ $$apreprint
000917388 980__ $$aVDB
000917388 980__ $$aUNRESTRICTED
000917388 980__ $$aI:(DE-Juel1)INM-2-20090406
000917388 9801_ $$aFullTexts