| Hauptseite > Publikationsdatenbank > Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C > print |
| 001 | 917410 | ||
| 005 | 20230123101928.0 | ||
| 024 | 7 | _ | |a 2128/33600 |2 Handle |
| 037 | _ | _ | |a FZJ-2023-00624 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Bode, Mathis |0 P:(DE-Juel1)192255 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a SAE WCX World Congress Experience |c Detroit |d 2022-04-05 - 2022-04-07 |w USA |
| 245 | _ | _ | |a Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C |
| 260 | _ | _ | |c 2022 |
| 300 | _ | _ | |a 1-9 |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1673846566_7467 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
| 490 | 0 | _ | |a SAE Technical Paper |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a Using deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20190501) |0 G:(DE-Juel1)jhpc55_20190501 |c jhpc55_20190501 |f Using deep learning to predict statistics of turbulent flows at high Reynolds numbers |x 1 |
| 770 | _ | _ | |z 2022-01-0503 |
| 773 | _ | _ | |y 2022 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/917410/files/dlc_06.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:917410 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192255 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a contb |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|