000917411 001__ 917411
000917411 005__ 20230801210805.0
000917411 0247_ $$2doi$$a10.4271/2022-01-0503
000917411 0247_ $$2Handle$$a2128/33608
000917411 037__ $$aFZJ-2023-00625
000917411 082__ $$a620
000917411 1001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b0$$eCorresponding author$$ufzj
000917411 245__ $$aApplying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C
000917411 260__ $$aWarrendale, Pa.$$bSoc.$$c2022
000917411 3367_ $$2DRIVER$$aarticle
000917411 3367_ $$2DataCite$$aOutput Types/Journal article
000917411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690879254_26785
000917411 3367_ $$2BibTeX$$aARTICLE
000917411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917411 3367_ $$00$$2EndNote$$aJournal Article
000917411 520__ $$aLarge-eddy simulation (LES) is an important tool to understand and analyze sprays, such as those found in engines. Subfilter models are crucial for the accuracy of spray-LES, thereby signifying the importance of their development for predictive spray-LES. Recently, new subfilter models based on physics-informed generative adversarial networks (GANs) were developed, known as physics-informed enhanced super-resolution GANs (PIESRGANs). These models were successfully applied to the Spray A case defined by the Engine Combustion Network (ECN). This work presents technical details of this novel method, which are relevant for the modeling of spray combustion, and applies PIESRGANs to the ECN Spray C case. The results are validated against experimental data, and computational challenges and advantages are particularly emphasized compared to classical simulation approaches.
000917411 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000917411 536__ $$0G:(EU-Grant)952181$$aCoEC - Center of Excellence in Combustion (952181)$$c952181$$fH2020-INFRAEDI-2019-1$$x1
000917411 536__ $$0G:(DE-Juel1)jhpc55_20190501$$aUsing deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20190501)$$cjhpc55_20190501$$fUsing deep learning to predict statistics of turbulent flows at high Reynolds numbers$$x2
000917411 588__ $$aDataset connected to CrossRef Conference
000917411 773__ $$0PERI:(DE-600)3003823-6$$a10.4271/2022-01-0503$$n6$$p2211-2219$$tSAE international journal of advances and current practices in mobility$$v4$$x2641-9637$$y2022
000917411 8564_ $$uhttps://juser.fz-juelich.de/record/917411/files/Invoice_20216526-1.pdf
000917411 8564_ $$uhttps://juser.fz-juelich.de/record/917411/files/2022-01-0503.pdf$$yOpenAccess
000917411 8767_ $$820216526-1$$92022-06-14$$a1200183111$$d2022-08-02$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2022-02616; USD 800,-
000917411 909CO $$ooai:juser.fz-juelich.de:917411$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost$$popenaire
000917411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b0$$kFZJ
000917411 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000917411 9141_ $$y2022
000917411 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917411 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000917411 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917411 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000917411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000917411 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000917411 980__ $$ajournal
000917411 980__ $$aVDB
000917411 980__ $$aI:(DE-Juel1)JSC-20090406
000917411 980__ $$aAPC
000917411 980__ $$aUNRESTRICTED
000917411 9801_ $$aAPC
000917411 9801_ $$aFullTexts