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Abstract

Large-eddy simulation (LES) is an important tool to 
understand and analyze sprays, such as those found in 
engines. Subfilter models are crucial for the accuracy of 

spray-LES, thereby signifying the importance of their develop-
ment for predictive spray-LES. Recently, new subfilter models 
based on physics-informed generative adversarial networks 
(GANs) were developed, known as physics-informed enhanced 

super-resolution GANs (PIESRGANs). These models were 
successfully applied to the Spray A case defined by the Engine 
Combustion Network (ECN). This work presents technical 
details of this novel method, which are relevant for the modeling 
of spray combustion, and applies PIESRGANs to the ECN Spray 
C case. The results are validated against experimental data, and 
computational challenges and advantages are particularly 
emphasized compared to classical simulation approaches.

Introduction

In order to accurately calculate complex flows with multi-
physical phenomena using direct numerical simulation 
(DNS), all relevant time and length scales must be resolved. 

This is not possible for many cases within an acceptable 
runtime regardless of the extensive computing capacities 
available today. Consequently, large-eddy simulation (LES) 
has established itself as a fair approach for turbulent, reactive 
flows, since it significantly reduces the required computational 
capacity. In this case, scales of various magnitudes are sepa-
rated from each other by utilizing a filter operation. During 
the simulation, equations for the coarser scales are solved, and 
the influence of the finer scales is modeled without fully 
resolving them. Therefore, a major task in the context of 
predictive simulations is the development of suitable models 
that reliably represent the effect of the finer scales on the 
coarser scales.

Since more and larger amounts of data are being gener-
ated and data analysis tools are significantly improved by 
recent developments focusing on artificial intelligence, data-
driven model building is becoming increasingly popular [1, 
2]. For example, data generated using DNS describing turbu-
lent mixing can be used to develop a corresponding LES 
mixing model. To have maximum flexibility, Deep Learning 
(DL) networks can be  employed for this purpose. These 
networks can represent very complex, non-linear objective 
functions and consider a wide data input space, as has already 

been demonstrated in many recent use cases from different 
scientific fields [3-6].

These data-driven approaches have also been applied to 
fluid dynamics problems [7-10], including works on subfilter 
modeling for LES [11-13] based on DNS data. Recently, the 
idea of physics- informed networks [14] has emerged, where 
architecture or loss functions are designed to support known 
properties of underlying physical problems.

Neural networks have also been applied successfully to 
reactive flows. Some examples are the adaptive reduction 
scheme for modeling reactive flows by Banerjee et al. [15], 
artificial neural network (ANN)-based storage of flamelet 
solutions [16, 17], and direct mapping of LES resolved scales 
to filtered-f lame generated manifolds using customized 
convolutional neural networks (CNNs) as shown by Seltz et al. 
[18]. Additionally, regularized deconvolution methods, such 
as those published by Wang and Ihme [19], are closely related 
ideas to subfilter modeling approach in this work.

PIESRGANs (Physics-Informed Enhanced Super-
Resolution Generative Adversarial Networks) have been 
recently developed and show high predictive accuracy for 
LES modeling in turbulent reactive flows [13, 20]. Similar 
to all GANs (Generative Adversarial Networks) [21], 
PIESRGAN uses two DL networks that play a zero-sum 
game during model building to finish with a very accurate 
generator network for an LES. For this, it is particularly 
important that the model building process, also known as 
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training, is performed effectively. Although the models 
based on PIESRGANs shown thus far are very promising, 
many questions remain unanswered and require 
further research.

LES models are also critical for the prediction of engine-
type sprays. Fully resolving all relevant scales is usually 
neither possible nor productive during an engine develop-
ment or optimization process. Davidovic et al. [22] showed 
that the early mixing for the Engine Combustion Network 
(ECN) [23] Spray A case is not trivial to model accurately 
with classical LES models. Bode et al. [20] investigated this 
effect even further and demonstrated that PIESRGAN-based 
LES models have significant advantages for the mixture 
prediction on coarse meshes. This work discusses the advan-
tages and shortcomings of PIESRGAN in terms of compu-
tational performance in more detail, as well as describes its 
application to the ECN Spray C case. As Spray C is more 
complex than Spray A, featuring cavitation and a shorter 
lift-off length (LOL), this study will depict that PIESRGAN 
also works well in this case. Additionally, it will be inter-
esting to observe how the simplified setup without nozzle 
flow coupling operates, as it is known that the Spray C plume 
is tilted, presumably due to low pressure regions at the orifice 
originating from cavitation [23].

This paper continues with a description of PIESRGANs, 
including combustion. Afterwards, details about the used 
turbulence data and implementation are briefly stated. The 
discussion part addresses the generality and universality prop-
erties of PIESRGAN, its accuracy with respect to mixture 
prediction, and its computational performance during training 
and on runtime. Subsequently, results of the ECN Spray C case 
are shown. The paper ends with conclusions.

Modeling
In this chapter, the turbulence and combustion modeling 
approaches are described.

Turbulence
The effects in turbulent flows can be described by the Navier-
Stokes equations and are coupled across all scales. This implies 
that all scales must be resolved simultaneously in simulations 
to obtain accurate solutions. For non-reactive single-phase 
turbulent flows without further multi-physical effects, the 
scale separation between coarse and fine scales is definable 
by the Reynolds number, i.e., the larger the Reynolds number, 
the larger the scale separation. Here, the smallest scale is 
represented by the Kolmogorov length and time. For flows 
with multi-physical effects, such as combustion, the scale 
separation can increase even more since the scalar mixing 
can take place on even finer scales, or a flame thinner than 
the Kolmogorov length can be established.

To reduce the enormous computational cost of very fine 
grids necessary due to the scale separation, LES separates 
the individual scales by a filter operation Ξ. During simula-
tion, the filtered Navier-Stokes equations are solved on a 
grid, which does not resolve the fine scales; consequently, 

the equations contain unclosed terms that cannot be deter-
mined without knowledge of the fine scales, and thus must 
be modeled. This is cost effective, but the accuracy of the 
results is highly dependent on the subfilter models employed 
for the unclosed terms.

PIESRGANs provide a novel approach to develop subfilter 
models for LES. The modeling idea is to estimate an inverse 
filtering operation Ξ-1 that adds the information that was 
filtered out back to filtered data (“F”). The resulting recon-
structed data (“R”) can then be used to exactly close the 
unclosed terms in the filtered equations, assuming an exact 
approximation. Indeed, this addition of information is non-
trivial and not possible with a simple “algebraic” model. Thus, 
in the context of PIESRGAN-LES models, the hypothesis is 
that the inverse filtering operation can be approximated suffi-
ciently accurately with a suitable DL-model and appropriate 
training data. It is essentially based on the physical notion 
that turbulence is statistically universal at the finest scales 
[24, 25], only depending on the viscosity and the mean scalar 
dissipation rate of the turbulent kinetic energy, which makes 
it possible to train the model on generic data and then apply 
it to different technical applications. The individual modeling 
steps are summarized in Table 1.

The results of the PIESRGAN model depend significantly 
on four factors: the network architecture, the implied physical 
constraints, the base training data (“H”), and the additional 
training data (“S”). The network architecture of PIESRGAN 
is based on ESRGANs (Enhanced Super-Resolution GANs) 
[3], which were originally designed to increase the resolution 
in two-dimensional (2-D) everyday images. Like any GAN, 
PIESRGAN has a generator network (Figure 1) and a discrimi-
nator network (Figure 2). Both significantly use Conv3D (3D 
Convolutional Layer) components with activation functions. 
In the generator network, these are combined to form DBs 
(Dense Blocks), RDBs (Residual Dense Blocks), and finally an 
RRDB (Residual in Residual Dense Block). The discriminator 
network uses BN (Batch Normalization) components, Dense 
components (“Fully Connected Layer”), and a dropout for 
regularization in addition to the Conv3D components. Both 
networks are coupled via the “adversarial” loss term in the 
loss functions, where the loss function of a network is the 
objective function that is minimized to optimize the param-
eters of the networks over all training data.

In general, the loss functions of both networks can 
be expressed as

 L L L L L� � � �� � � �1 2 3 4adversarial pixel gradient physics (1)

with four loss terms, where β1... β4 are the weight 
factors of the individual loss terms and sum to one. Here, 

TABLE 1 PIESRGAN modeling steps using the example of the 
time evolution from n to n+1 of a quantity ϕ with unclosed 
terms ψ in the associated filtered equation.

Step Action Description
1 Reconstruction Reconstruct ϕR

n from ϕF
n using PIESRGAN

2 Evaluation Use ϕR
n and a filter operation to compute 

ψF
n

3 Advancement Advance ϕF
n+1 with the filtered equations, 

ϕF
n and ψF

n
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Ladversarial stands for the adversarial loss typical of GANs, 
Lpixel is the integral point-wise defined loss based on the 
target data field, Lgradient depicts an integral point-wise 
defined loss based on the gradient of the target data field, 
and Lphysics is the set of certain problem-specific losses that 
are physically motivated. For example, PIESRGAN may use 
a loss to ensure mass conservation in the reconstructed 
data field. This physically motivated modification of the 
loss functions is particularly significant in the context of 
subfilter modeling for LES relative to other traditional 
computer science applications to minimize certain errors 
as much as possible, since they would otherwise lead to 
numerically unstable simulations.

The base training data is usually high-resolution data that 
can be determined using DNS or experimental methods. It is 
filtered to obtain pairs of data required in order to train the 
networks. The networks are provided with the filtered data 
and continuously optimized to reconstruct the resolved data 
with respect to the loss functions as the amount of data 
increases. For the evaluations of the loss functions, the corre-
sponding high-resolution data, which serve as the “exact” 
solution, must generally be known. DNS data of homogeneous 
isotropic turbulence in a box has proven to be good base 
training data.

In an additional training step, other data can be used to 
further increase the accuracy of PIESRGANs. Here, it is also 
possible to optimize only the generator network and continue 
without a further update of the discriminator network. In this 

particular training step, the adversarial loss is then often of 
special importance, as wil l be  discussed in the 
discussion chapter.

Further details on PIESRGANs, such as the normaliza-
tion of the individual variables, determination of the factors 
and effects of individual network components, are described 
in the studies conducted by Bode et al. [13, 20].

Combustion
Chemistry is modeled by means of a multiple representative 
interactive flamelets (MRIF) approach. The general approach 
is summarized in Figure 3, and further details can be found 
in previous publications [22, 26]. In simple terms, the flow 
solver and the chemistry solver are only loosely coupled by 
the scalar dissipation rate χ in flamelet approaches, and an 
equation for the mixture fraction Z (and usually its variance) 
is solved as part of the LES, which allows to solve the chem-
istry in 1-D mixture fraction space instead of 3-D physical 
space. One consecutive challenge is to accurately remap the 
solutions computed in mixture fraction space on the physical 
space. Usually, this is done by constructing a presumed 
β-PDF (probability density function) depending on the local 
filtered mixture fraction and mixture fraction variance. 
However, this functional form is an obvious approximation. 
Thus, in this work, the remapping is done based on the recon-
structed mixture fraction field combined with a filter opera-
t ion, reducing t he required level of a pr ior i 
knowledge significantly.

This work only aims to demonstrate the applicability of 
PIESRGAN for advanced reactive spray cases. However, it is 
obvious that the omission of the remap-PDF is also very 
helpful for emission prediction, such as soot, where the devia-
tion from pre-known PDFs is often even more significant [24]. 
Note that the functional form of the scalar dissipation rate (f 
in Figure 3) is another important assumption, which could 
be also fully evaluated by means of PIESRGAN. However, a 
commonly used presumed log-based reference shape was used 
in this study.

 FIGURE 1  Schematic representation of the PIESRGAN generator network: Conv3D - 3D Convolutional Layer, LeakyReLU - 
Activation Function, DB - Dense Block, RDB - Residual Dense Block, RRDB - Residual in Residual Dense Block, βRSF - Residual 
Scaling Factor.

 FIGURE 2  Schematic representation of the PIESRGAN 
discriminator network: Conv3D - 3D Convolutional Layer, 
LeakyReLU - Activation Function, BN - Batch Normalization, 
Dense - Fully Connected Layer, Dropout - Regularization 
Component, βdropout - Dropout Factor.
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Turbulence Data
For this work, the PIESRGAN was trained with one of the 
largest existing decaying turbulence DNS datasets [27] 
featuring velocity and scalar f low fields. The dataset 
consists of periodic boxes of homogeneous isotropic turbu-
lence with Reynolds numbers based on the Taylor 
microscale Reλ of up to 88, simulated on 40963 mesh points. 
Turbulent structures and their decay are illustrated for the 
used case in Figure 4.

Implementation Details
All application cases and testing were performed using the 
inhouse code CIAO. CIAO is astructured finite difference code 
with multiple solvers, such as a low-Mach solver and a compress-
ible solver, which was used in this work. It utilizes staggering, 
and several multi-physics effects, such as chemistry and multi-
phase effects, can also be considered while solving the Navier-
Stokes equations. Both DNS and LES can be performed with 
the same code framework, allowing for efficient development 
of LES models. Examples for successful multi-physics DNS 
[28, 29], multi-scale applications [30-32], and computing opti-
mizations [33, 34] with CIAO can be found in the literature.

With respect to PIESRGAN, an implemented network 
can be found on GIT (https://git.rwth- aachen.de/Mathis.
Bode/PIESRGAN.git) in order to increase the reproducibility 
of this work and clarify more technical details.

Discussion
This chapter discusses certain aspects of PIESRGAN. First, 
the universality and the generality are addressed. Afterwards, 
the accuracy of predicting mixing is investigated. Finally, the 
performance of PIESRGAN during training and on runtime 
is shown quantitatively.

Universality and Generality
The universality of data-based methods is always known to 
be a critical issue. This is true with respect to validity outside 

 FIGURE 3  Schematic representation of the MRIF approach. Tilde denotes Favre-filtered data. The overbar indicates Reynolds-
averaging. The hat labels quantities in mixture fraction space. Z is the mixture fraction, Wi the flamelet weights, p the pressure, χ 
the scalar dissipation rate, ρ the density, Yα the mass fractions, e the internal energy, and T the temperature. β denotes the 
presumed β-PDF, and f indicates the functional form of the scalar dissipation rate. The spatial coordinates are represented by 

�
x, and 

integration over the volume of the full domain is described by ∫
�

dV . All variables are time dependent, but t is omitted here 
for brevity.

 FIGURE 4  Visualization of turbulent structures and their 
decay over time from an early time step (left) to a late time 
step (right). Obviously, while the number of structures 
decreases over time, their size increases. The relevant 
turbulence length scales - Kolmogorov length η and Taylor 
length lt - also grow.
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the training data domain as well as with regards to various 
physical configurations, such as combustion type. In the field 
of turbulence modeling, this is particularly critical, since on 
the one hand, it is not possible to create data sets with arbi-
trarily high Reynolds number due to computational costs, 
and, on the other hand, many industrial applications have 
extremely high Reynolds numbers, for example, to increase 
the mixing rate.

Bode et  al. [20] have presented a two-step training 
approach to increase the universality of PIESRGANs. In this 
approach, first, the generator network and the discriminator 
network are trained simultaneously with H/F data pairs. In 
the second step, the generator network is further optimized 
with S-data. In this case, S-data are under-resolved turbulence 
data at larger Reynolds numbers, for which no high-resolution 
reference data are available. Here, the generator loss function 
reduces to the physically motivated loss term and the adver-
sarial loss term. If there is no physically motivated boundary 
condition for the target variable, as may be the case for passive 
scalars, even only the adversarial loss term remains, since the 
generator loss function and the significance of this term is 
clear. The basic idea is that this term ensures that certain 
features intrinsic to turbulence, which the discriminator 
network has learned from the high-precision data and passes 
on via the adversarial loss term, remain in the optimized 
generator network.

A similar generalization approach can be followed with 
respect to different physical configurations, again benefiting 
from the advantage of GANs over simpler DL networks: First, 
a PIESRGAN is trained with the basic H/F training data. Then, 
the physically motivated loss terms are updated, and S-data 
is used to optimize the generator network for the actual appli-
cation. The S-data here can refer to data pairs, e.g., separate 
DNS data, or only simple training data. Again, the adversarial 
term is of great importance, since it acts as a corrective to 
ensure that certain turbulence features remain fulfilled in the 
final network. The procedure is also summarized in Table 2.

Mixing
The mixing process is especially critical for spray combustion 
cases. In the limit of the modeling approach discussed here, 
the following consecutive processes take place: the continuous 
liquid fuel phase split into smaller ligaments and successively 
into small droplets. In this disperse phase, the liquid fuel 
evaporates and starts mixing with the ambient gas phase. 
Ultimately, the combustion processes occur. The larger the 
resulting flame lift-off length (LOL) is relatively to the liquid 
penetration length (LPL), the more the resulting combustion 
is similar to classical non-premixed combustion, which is 
dominated by mixing processes. Thus, for spray combustion 
cases with sufficiently fast evaporation processes (one factor 
for a sufficiently large LOL and short LPL), accurate prediction 

of gas-phase mixing is one of the most important factors for 
predictive combustion simulations. As the evaluation of these 
mixing processes is very challenging under real engine spray 
conditions, especially, due to the lack of experimental data at 
these conditions, a simpler DNS case is used here for further 
discussion of PIERSGAN performance for predicting 
such processes.

Figure 5 shows the mixture fraction PDF of a reactive, 
time-evolving methane jet mixing with air and simultane-
ously incinerating. The Reynolds number of the case is 10,000 
and the Damköhler number is 0.15. Details of the DNS have 
been described by Denker et al. [29, 35]. For the a posteriori 
test, an early DNS solution, which was not used for training, 
was filtered and stored on a grid smaller by a factor of 64. This 
field was then temporally evolved using LESs with different 
subfilter models. Notably, the PIESRGAN-LES is able to 
correctly predict the mixing rate after the simulation was 
advanced for some time. The resulting PDF is very close to 
the PDF calculated on the DNS-data. In contrast, the classical 
LES without special LES mixing model significantly under-
estimates the mixing rate due to the underestimation of the 
local turbulence intensity. Overall, the PIESRGAN model 
gives a much better result, indicating that it should also signifi-
cantly improve the prediction performance of spray-LES, if 
the combustion region is dominated by gas-phase mixing.

Training Performance
Computational costs are another critical issue worth 
discussing in the context of PIESRGANs. This concerns both 
the costs of training the GAN and of using it as a model during 
an LES. In the long run, the recurring costs as an LES model 
are more pivotal to the widespread use of a PIESRGAN-LES-
model, although training costs are not negligible. In addition 
to the aforementioned costs, costs of creating the high-reso-
lution data may also incur, if applicable. However, these will 
not be  considered further here, as it is assumed that 
PIESRGANs will be used on existing data.

Figure 6 compares the training performances of 
PIESRGANs on different computing clusters. The computing 
cluster “JURECA” uses the Tesla K80 GPU, whereas the two 

TABLE 2 Summary of the PIESRGAN training strategy with 
respect to different update steps.

Step Action Data Update
1 Base training H/F Generator & Discriminator

2 Special training S Generator

 FIGURE 5  A posteriori test results for mixing prediction of 
a time-evolving methane jet for different LES subfilter scale 
models. “LES” corresponds to a “classical” LES with dynamic 
Smagorinski model.
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computing clusters “JUWELS” and “CLAIX18” use the 
newer Tesla V100 GPU. Up to four GPUs per compute node 
can be used for training (for CLAIX18, only a maximum of 
two GPUs is available). Boxes with a total of 4096 data points 
per data field were used as input during training, and the 
figure illustrates the number of boxes that can be processed 
per minute per compute node. The speed of newer GPU 
generation is striking for the PIESRGAN use case, which is 
also in line with the theoretical benchmark results and 
underlines the rapid development in this area. It is clear that 
due to this rapid development, the network training costs 
will continue to decrease relative to the costs of applying the 
model in an LES context, shifting the focus further towards 
runtime performance comparisons as discussed in the 
following sections.

Runtime Performance
The available computing capacities have been increased 
tremendously over the last years. At the Jülich Supercomputing 
Centre (JSC) [36], one of Germany’s three big supercomputing 
facilities, the performance increased from 5.9 PFlop/s 
(JUQUEEN) to over 70 PFlop/s (JUWELS). However, from a 
fluid dynamic perspective, the development is not as distinct. 
Mostly due to bad cache usage because of complex stencils 
and the lack of sparse matrices for multi-physics cases, the 
actual performance of complex computational fluid dynamics 
(CFD) codes is often only 2%-5% of the theoretical LINPACK 
peak performance [33], even on clusters without GPUs. 
Unfortunately, for CFD applications, the major performance 
increase of almost all new clusters is by GPUs. For example, 
one JUWELS compute node features two AMD Epyc Rome 
CPUs but four Nvidia A100 GPUs. Thus, it is not possible to 
benefit from the tremendous gain in computing capacities if 
GPUs cannot be efficiently used.

Figure 7 shows the relative costs related to the Spray C 
LES use case, which is further discussed in the next chapter. 
LES with PIESRGAN as a subfilter model and LES with a 
traditional dynamic Smagorinsky (DS) model are compared. 
The cost of DS-LES using only CPUs is defined as 100%. It 
can be seen that the PIESRGAN subfilter model is signifi-
cantly more expensive. This is not surprising, since more 
operations, especially the evaluation of the reconstructed 
data using filtering, need to be performed. Bode et al. [20], 

however, demonstrated that LES with PIESRGAN require 
fewer data points than LES with DS model to achieve compa-
rable accuracy for the early mixing in the domain. For that, 
they compared DS-LES and PIESRGAN-LES results for an 
inert case with experimental data. Therefore, a “fairer” 
comparison of the performance and runtime cost could 
be based on a prescribed accuracy with a flexible number of 
grid points per simulation instead of a fixed number of grid 
points per simulation without any accuracy requirement. 
Hence, the computational cost for PIESRGAN-LES compared 
to an LES with a similar accuracy instead of the same number 
of data points is more beneficial for the PIESRGAN-LES. 
Additionally, it is important to consider that users often 
cannot choose the perfect computing cluster but are required 
to make use of what is available to them. Modern computing 
clusters usually have many GPUs, which are difficult to use 
with traditional LES models, leading to many unused FLOPS 
in the case of commonly employed CFD modeling. However, 
using them in the context of PIESRGAN is relatively straight-
forward. Thus, both approaches become similarly expensive 
under the conditions of equal accuracy and a combined CPU 
& GPU computing cluster available. It is particularly inter-
esting that PIESRGAN modeling can also be seen as a change 
in the general computational approach, since cache-intensive 
operations, typical of ordinary flow solvers, are reduced and 
instead more computation time is required in tensor-heavy 
operations. Figure 6 illustrates the rapid development in 
tensor-heavy operations. Thus, as an outlook, it is not 
unlikely that this computational approach will benefit much 
more from future hardware improvements in terms of a 
shor ter t ime to solut ion, even surpassing the 
conventional models.

Application
Simulations for multiple ambient temperatures were performed 
for the ECN Spray C case. The same mesh as in Bode et al. [20] 
was used, as well as the same mechanism by Yao et al. [37]. 
PIESRGAN dealt as LES-model for velocity and scalars, 
including, as mentioned, the remap subfilter-PDF. The nozzle 
internal flow has not been computed; however, the effective 
orifice diameter was reduced by the volume-based amount of 

 FIGURE 6  Comparison of the PIESRGAN training 
performance for different computing clusters and GPUs.

 FIGURE 7  Comparison of PIESRGAN runtime costs for 
different target scenarios.
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known cavitation at the exit [23]. Breakup and evaporation 
models were the same as in the spray setup conducted by Goeb 
et al. [26]. The simulation setup is summarized in Table 3 in 
comparison to simulation setups employed in earlier work. 
Details regarding the used models can be found there. Note 
that even if the same breakup models were utilized in all simu-
lations, their effect differs. Typically, a prescribed droplet distri-
bution results in “very small” droplets very early in the domain, 
resulting in a small impact of the breakup models. In these 
cases, even the sensitivity with respect to the evaporation model 
is small, as the droplets quickly reach a lower cut-off diameter. 
For cases with blob injection, the breakup and evaporation 
models play a larger role.

Four different operation points with different ambient 
temperatures were considered in order to assess whether the 
PIESRGAN is as accurate as expected and whether the correct 
trends can be reproduced. The different cases are labeled by 
their ambient temperature in Kelvin as SC900, SC1000, 
SC1100, and SC1200. The other nominal conditions are iden-
tical among all cases with n-dodecane as fuel, 150 MPa injec-
tion pressure, 22.8 kg/m3 ambient density, 15% ambient 
oxygen concentration, and 363 K fuel temperature. Note that 
in all simulations, actual measurement data were used instead 
of the nominal values to improve the comparability to 
experimental data.

Figure 8 compares the LOLs of the different cases over 
time. As expected, the LPL reduces with increasing tempera-
ture, as the evaporation process is accelerated. Interestingly, 

for long timings, the liquid penetration of SC1200 becomes 
larger than that of SC1100. However, the separation between 
these two cases is not large and only one realization has been 
run, limiting the statistical validity of the results.

Figures 9 and 10 compare the resulting LOL and ignition 
delay time with experimental data [23] for all four cases. The 
simulation is generally able to predict the trend correctly, which 
depicts that both LOL and ignition delay time reduce with 
increasing temperature. However, all values are slightly under-
predicted. A similar result was found by Bode et al. [20], which 
might be attributed to the used chemical mechanism that 
strongly affects both quantities. Finally, Figures 8-10 allow the 

TABLE 3 Summary of different spray-LES simulation approaches.

Work Davidovic et al. [22] Goeb et al. [26] Bode et al. [20] Here
Initial droplets Droplet distribution Blob with nozzle diameter Droplet distribution Blob with effective liquid 

diameter (volume based)

Breakup KH/RT KH/RT KH/RT KH/RT

Evaporation Bellan Bellan Bellan Bellan

Velocity closure Dynamic Smagorinsky Dynamic Smagorinsky PIESRGAN PIESRGAN

Mixing closure Dynamic Smagorinsky Dynamic Smagorinsky PIESRGAN PIESRGAN

Combustion model MRIF MRIF MRIF MRIF

Subfilter PDF Presumed beta-PDF Presumed beta-PDF Presumed beta-PDF PIESRGAN

Dissipation form Presumed log-based Presumed log-based Presumed log-based Presumed log-based

 FIGURE 8  Comparison of the resulting LPL from 
simulations with different ambient temperatures for the 
considered Spray C case.

 FIGURE 9  Comparison of the resulting LOL from 
simulations and experiments for the considered Spray C cases.

 FIGURE 10  Comparison of the resulting ignition delay time 
from simulations and experiments for the considered Spray 
C cases.
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conclusion that for the ECN Spray C case, the relative separa-
tion of LOL and LPL seems sufficient for the standard single-
phase mixing approach, as discussed earlier.

Summary/Conclusions
This paper demonstrates the application of PIESRGAN to 
the ECN Spray C case. The presented simulations are able 
to capture experimental data reasonably and could be used 
as basis for further physical analyses of the ECN Spray C 
case. The discussion focus of this work was on the compu-
tational and numerical aspects of PIESRGAN-LES. The 
accuracy of PIESRGAN-based mixture prediction is fair; 
however, its implementation requires more computing 
operations per execution. In this context, the computational 
performance on current GPU-heavy supercomputers 
was addressed.
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