001     917493
005     20230929112506.0
024 7 _ |a 10.1007/s11249-022-01688-y
|2 doi
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a 2128/33704
|2 Handle
024 7 _ |a WOS:000905664900001
|2 WOS
037 _ _ |a FZJ-2023-00706
082 _ _ |a 670
100 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 0
|e Corresponding author
245 _ _ |a Influence of Surface Roughness on Press Fits
260 _ _ |a Dordrecht
|c 2023
|b Springer Science Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674117572_13081
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A press fit, also known as interference fit or friction fit, is a form of fastening between two tight fitting mating parts (usually two bodies with cylinder or conical surfaces) that produces a joint which is held together by friction after the parts are pushed together. I discuss the influence of surface roughness on the design of press fits. This topic has been addressed in the engineering community but only on an empirical level without a scientific backup. Here, I will apply the Persson contact mechanics theory to show how to include the surface roughness in the design criteria. I argue that one should use what I denote as the cylinder “stylus width” rather than the “caliper width” when determining the influence of the surface roughness of the compression (also denoted as the interference). In the classical approach using the caliper width, the compression is assumed to be independent of the elastic properties of the solids, but in the more accurate approach presented here using the stylus width the compression depends on the elastic properties and on the surface roughness power spectra of the involved solids. A detailed discussion of the relation between the root-mean-square roughness amplitude hrms and the maximum asperity height hmax, of interest in its own right, is also presented as it is needed for determining the relation between the stylus and caliper derived compression’s.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
773 _ _ |a 10.1007/s11249-022-01688-y
|g Vol. 71, no. 1, p. 19
|0 PERI:(DE-600)2015908-0
|n 1
|p 19
|t Tribology letters
|v 71
|y 2023
|x 1023-8883
856 4 _ |u https://juser.fz-juelich.de/record/917493/files/s11249-022-01688-y.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917493
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRIBOL LETT : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21