001     917504
005     20240712113144.0
024 7 _ |a 10.1021/jacsau.2c00650
|2 doi
024 7 _ |a 10.34734/FZJ-2023-00717
|2 datacite_doi
024 7 _ |a 36873696
|2 pmid
024 7 _ |a WOS:000923981500001
|2 WOS
037 _ _ |a FZJ-2023-00717
082 _ _ |a 540
100 1 _ |a Huang, Jun
|0 P:(DE-Juel1)192568
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Zooming into the Inner Helmholtz Plane of Pt(111)-Aqueous Solution Interfaces: Chemisorbed Water and Partially-Charged Ions
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707994830_1296
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The double layer on transition metals, i.e., platinum, features chemical metal–solvent interactions and partially charged chemisorbed ions. Chemically adsorbed solvent molecules and ions are situated closer to the metal surface than electrostatically adsorbed ions. This effect is described tersely by the concept of an inner Helmholtz plane (IHP) in classical double layer models. The IHP concept is extended here in three aspects. First, a refined statistical treatment of solvent (water) molecules considers a continuous spectrum of orientational polarizable states, rather than a few representative states, and non-electrostatic, chemical metal–solvent interactions. Second, chemisorbed ions are partially charged, rather than being electroneutral or having integral charges as in the solution bulk, with the coverage determined by a generalized, energetically distributed adsorption isotherm. The surface dipole moment induced by partially charged, chemisorbed ions is considered. Third, considering different locations and properties of chemisorbed ions and solvent molecules, the IHP is divided into two planes, namely, an AIP (adsorbed ion plane) and ASP (adsorbed solvent plane). The model is used to study how the partially charged AIP and polarizable ASP lead to intriguing double-layer capacitance curves that are different from what the conventional Gouy–Chapman–Stern model describes. The model provides an alternative interpretation for recent capacitance data of Pt(111)–aqueous solution interfaces calculated from cyclic voltammetry. This revisit brings forth questions regarding the existence of a pure double-layer region at realistic Pt(111). The implications, limitations, and possible experimental confirmation of the present model are discussed.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1021/jacsau.2c00650
|g p. jacsau.2c00650
|0 PERI:(DE-600)3049543-X
|n 2
|p 550-564
|t JACS Au
|v 3
|y 2023
|x 2691-3704
856 4 _ |u https://juser.fz-juelich.de/record/917504/files/Invoice_APC600382113.pdf
856 4 _ |u https://juser.fz-juelich.de/record/917504/files/Huang_Zooming%20into%20the%20Inner.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/917504/files/jacsau.2c00650.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917504
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192568
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JACS AU : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-18T10:11:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-18T10:11:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-18T10:11:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b JACS AU : 2022
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21