000917539 001__ 917539
000917539 005__ 20240712084452.0
000917539 0247_ $$2doi$$a10.1002/celc.202200838
000917539 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-00742
000917539 0247_ $$2WOS$$aWOS:000903106400001
000917539 037__ $$aFZJ-2023-00742
000917539 082__ $$a540
000917539 1001_ $$0P:(DE-Juel1)173834$$aLee, Minoh$$b0$$eCorresponding author
000917539 245__ $$aScalable Photovoltaic‐Electrochemical Cells for Hydrogen Production from Water ‐ Recent Advances
000917539 260__ $$aWeinheim$$bWiley-VCH$$c2022
000917539 3367_ $$2DRIVER$$aarticle
000917539 3367_ $$2DataCite$$aOutput Types/Journal article
000917539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700557599_20078
000917539 3367_ $$2BibTeX$$aARTICLE
000917539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917539 3367_ $$00$$2EndNote$$aJournal Article
000917539 520__ $$aHydrogen is regarded as a very important pillar for the future energy supply because it is readily available from water and can be used for environmentally friendly electricity generation. Hydrogen can be produced in various ways. Water splitting powered by renewable resources (e. g., solar, wind, etc.) can be an ideal way of hydrogen generation in the future since this approach can achieve true net-zero carbon dioxide emissions. This review article is aimed at giving an overview of the state-of-the-art hydrogen generation driven by photovoltaics (PVs) on a relatively large-scale (with PV area >50 cm2). The basic knowledge/principle of (PV-driven) water splitting is introduced in the beginning part. Then, different types of PV-driven water splitting devices and the recent advances in scalable PV-electrochemical water splitting devices are intensively reviewed in the middle part. Finally, cost predictions and challenges that need to be addressed are presented at the end of this article.
000917539 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000917539 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917539 7001_ $$0P:(DE-Juel1)130246$$aHaas, Stefan$$b1
000917539 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b2
000917539 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b3
000917539 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b4$$ufzj
000917539 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202200838$$gVol. 9, no. 24$$n24$$p1$$tChemElectroChem$$v9$$x2196-0216$$y2022
000917539 8564_ $$uhttps://juser.fz-juelich.de/record/917539/files/ChemElectroChem%20-%202022%20-%20Lee%20-%20Scalable%20Photovoltaic%E2%80%90Electrochemical%20Cells%20for%20Hydrogen%20Production%20from%20Water%20%E2%80%90%20Recent.pdf$$yOpenAccess
000917539 8767_ $$d2022-12-27$$eHybrid-OA$$jDEAL
000917539 909CO $$ooai:juser.fz-juelich.de:917539$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000917539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b1$$kFZJ
000917539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b2$$kFZJ
000917539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b3$$kFZJ
000917539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b4$$kFZJ
000917539 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000917539 9141_ $$y2023
000917539 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917539 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000917539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000917539 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2021$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-17$$wger
000917539 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917539 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000917539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000917539 920__ $$lyes
000917539 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000917539 9801_ $$aAPC
000917539 9801_ $$aFullTexts
000917539 980__ $$ajournal
000917539 980__ $$aVDB
000917539 980__ $$aUNRESTRICTED
000917539 980__ $$aI:(DE-Juel1)IEK-5-20101013
000917539 980__ $$aAPC
000917539 981__ $$aI:(DE-Juel1)IMD-3-20101013