000917544 001__ 917544
000917544 005__ 20240711101424.0
000917544 0247_ $$2doi$$a10.3390/en15249517
000917544 0247_ $$2Handle$$a2128/33742
000917544 0247_ $$2WOS$$aWOS:000902470600001
000917544 037__ $$aFZJ-2023-00747
000917544 082__ $$a620
000917544 1001_ $$0P:(DE-Juel1)185783$$aPatil, Shruthi$$b0$$eCorresponding author
000917544 245__ $$aAdvanced Spatial and Technological Aggregation Scheme for Energy System Models
000917544 260__ $$aBasel$$bMDPI$$c2022
000917544 3367_ $$2DRIVER$$aarticle
000917544 3367_ $$2DataCite$$aOutput Types/Journal article
000917544 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674544012_26571
000917544 3367_ $$2BibTeX$$aARTICLE
000917544 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917544 3367_ $$00$$2EndNote$$aJournal Article
000917544 520__ $$aEnergy system models that consider variable renewable energy sources (VRESs) are computationally complex. The greater spatial scope and level of detail entailed in the models exacerbates complexity. As a complexity-reduction approach, this paper considers the simultaneous spatial and technological aggregation of energy system models. To that end, a novel two-step aggregation scheme is introduced. First, model regions are spatially aggregated to obtain a reduced region set. The aggregation is based on model parameters such as VRES time series, capacities, etc. In addition, spatial contiguity of regions is considered. Next, technological aggregation is performed on each VRES, in each region, based on their time series. The aggregations’ impact on accuracy and complexity of a cost-optimal, European energy system model is analyzed. The model is aggregated to obtain different combinations of numbers of regions and VRES types. Results are benchmarked against an initial resolution of 96 regions, with 68 VRES types in each. System cost deviates significantly when lower numbers of regions and/or VRES types are considered. As spatial and technological resolutions increase, the cost fluctuates initially and stabilizes eventually, approaching the benchmark. Optimal combination is determined based on an acceptable cost deviation of <5% and the point of stabilization. A total of 33 regions with 38 VRES types in each is deemed optimal. Here, the cost is underestimated by 4.42%, but the run time is reduced by 92.95%.
000917544 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000917544 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000917544 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917544 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b1
000917544 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b2$$ufzj
000917544 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en15249517$$gVol. 15, no. 24, p. 9517 -$$n24$$p9517 -$$tEnergies$$v15$$x1996-1073$$y2022
000917544 8564_ $$uhttps://juser.fz-juelich.de/record/917544/files/energies-15-09517.pdf$$yOpenAccess
000917544 8767_ $$d2022-12-26$$eAPC$$jZahlung erfolgt
000917544 909CO $$ooai:juser.fz-juelich.de:917544$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000917544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185783$$aForschungszentrum Jülich$$b0$$kFZJ
000917544 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185783$$aRWTH Aachen$$b0$$kRWTH
000917544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b2$$kFZJ
000917544 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b2$$kRWTH
000917544 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000917544 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000917544 9141_ $$y2022
000917544 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000917544 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917544 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2021$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-19T09:53:42Z
000917544 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-19T09:53:42Z
000917544 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917544 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000917544 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000917544 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917544 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000917544 920__ $$lyes
000917544 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000917544 9801_ $$aAPC
000917544 9801_ $$aFullTexts
000917544 980__ $$ajournal
000917544 980__ $$aVDB
000917544 980__ $$aUNRESTRICTED
000917544 980__ $$aI:(DE-Juel1)IEK-3-20101013
000917544 980__ $$aAPC
000917544 981__ $$aI:(DE-Juel1)ICE-2-20101013