Hauptseite > Publikationsdatenbank > Predicting executive functioning from functional brain connectivity: network specificity and age effects > print |
001 | 917545 | ||
005 | 20230929112507.0 | ||
024 | 7 | _ | |a 10.1093/cercor/bhac520 |2 doi |
024 | 7 | _ | |a 1047-3211 |2 ISSN |
024 | 7 | _ | |a 1460-2199 |2 ISSN |
024 | 7 | _ | |a 2128/34545 |2 Handle |
024 | 7 | _ | |a 36635227 |2 pmid |
024 | 7 | _ | |a WOS:000912678900001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00748 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Heckner, Marisa K |0 P:(DE-Juel1)173770 |b 0 |e Corresponding author |
245 | _ | _ | |a Predicting executive functioning from functional brain connectivity: network specificity and age effects |
260 | _ | _ | |a Oxford |c 2023 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1690808323_13872 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Healthy aging is associated with altered executive functioning (EF). Earlier studies found age-related differences in EF performance to be partially accounted for by changes in resting-state functional connectivity (RSFC) within brain networks associated with EF. However, it remains unclear which role RSFC in EF-associated networks plays as a marker for individual differences in EF performance. Here, we investigated to what degree individual abilities across 3 different EF tasks can be predicted from RSFC within EF-related, perceptuo-motor, whole-brain, and random networks separately in young and old adults. Specifically, we were interested if (i) young and old adults differ in predictability depending on network or EF demand level (high vs. low), (ii) an EF-related network outperforms EF-unspecific networks when predicting EF abilities, and (iii) this pattern changes with demand level. Both our uni- and multivariate analysis frameworks analyzing interactions between age × demand level × networks revealed overall low prediction accuracies and a general lack of specificity regarding neurobiological networks for predicting EF abilities. This questions the idea of finding markers for individual EF performance in RSFC patterns and calls for future research replicating the current approach in different task states, brain modalities, different, larger samples, and with more comprehensive behavioral measures. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Cieslik, Edna C |0 P:(DE-Juel1)131855 |b 1 |u fzj |
700 | 1 | _ | |a Patil, Kaustubh R |0 P:(DE-Juel1)172843 |b 2 |u fzj |
700 | 1 | _ | |a Gell, Martin |0 P:(DE-Juel1)185960 |b 3 |u fzj |
700 | 1 | _ | |a Eickhoff, Simon B |0 P:(DE-Juel1)131678 |b 4 |u fzj |
700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 5 |u fzj |
700 | 1 | _ | |a Langner, Robert |0 P:(DE-Juel1)131693 |b 6 |u fzj |
773 | _ | _ | |a 10.1093/cercor/bhac520 |g p. bhac520 |0 PERI:(DE-600)1483485-6 |n 11 |p 6495–6507 |t Cerebral cortex |v 33 |y 2023 |x 1047-3211 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917545/files/Invoice_E15991452.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917545/files/Heckner_MS_NetworkSpecificity_final.pdf |y Published on 2023-01-12. Available in OpenAccess from 2024-01-12. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917545/files/bhac520.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:917545 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173770 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)173770 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131855 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)131855 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172843 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)172843 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)185960 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)185960 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131684 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)131684 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131693 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)131693 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-11 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CEREB CORTEX : 2022 |d 2023-08-23 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|