000917546 001__ 917546
000917546 005__ 20230929112507.0
000917546 0247_ $$2doi$$a10.1093/braincomms/fcac336
000917546 0247_ $$2Handle$$a2128/33662
000917546 0247_ $$2pmid$$a36632188
000917546 0247_ $$2WOS$$aWOS:000911103200004
000917546 037__ $$aFZJ-2023-00749
000917546 082__ $$a610
000917546 1001_ $$0P:(DE-HGF)0$$aKernbach, Julius M$$b0$$eCorresponding author
000917546 245__ $$aMeta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
000917546 260__ $$a[Großbritannien]$$bGuarantors of Brain$$c2023
000917546 3367_ $$2DRIVER$$aarticle
000917546 3367_ $$2DataCite$$aOutput Types/Journal article
000917546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673957932_26150
000917546 3367_ $$2BibTeX$$aARTICLE
000917546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917546 3367_ $$00$$2EndNote$$aJournal Article
000917546 520__ $$aThe current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology's unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical-clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.
000917546 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000917546 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917546 7001_ $$0P:(DE-HGF)0$$aDelev, Daniel$$b1
000917546 7001_ $$0P:(DE-HGF)0$$aNeuloh, Georg$$b2
000917546 7001_ $$0P:(DE-HGF)0$$aClusmann, Hans$$b3
000917546 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b4
000917546 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b5
000917546 7001_ $$0P:(DE-HGF)0$$aStaartjes, Victor E$$b6
000917546 7001_ $$0P:(DE-HGF)0$$aVasella, Flavio$$b7
000917546 7001_ $$0P:(DE-HGF)0$$aWeller, Michael$$b8
000917546 7001_ $$0P:(DE-HGF)0$$aRegli, Luca$$b9
000917546 7001_ $$0P:(DE-HGF)0$$aSerra, Carlo$$b10
000917546 7001_ $$0P:(DE-HGF)0$$aKrayenbühl, Niklaus$$b11
000917546 7001_ $$0P:(DE-HGF)0$$aAkeret, Kevin$$b12
000917546 773__ $$0PERI:(DE-600)3020013-1$$a10.1093/braincomms/fcac336$$gVol. 5, no. 1, p. fcac336$$n1$$pfcac336$$tBrain communications$$v5$$x2632-1297$$y2023
000917546 8564_ $$uhttps://juser.fz-juelich.de/record/917546/files/fcac336.pdf$$yOpenAccess
000917546 909CO $$ooai:juser.fz-juelich.de:917546$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000917546 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5
000917546 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000917546 9141_ $$y2023
000917546 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917546 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-21T13:34:18Z
000917546 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-21T13:34:18Z
000917546 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-24
000917546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917546 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-24
000917546 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN COMMUN : 2022$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-02-21T13:34:18Z
000917546 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000917546 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000917546 920__ $$lyes
000917546 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000917546 980__ $$ajournal
000917546 980__ $$aVDB
000917546 980__ $$aUNRESTRICTED
000917546 980__ $$aI:(DE-Juel1)INM-7-20090406
000917546 9801_ $$aFullTexts