001     917546
005     20230929112507.0
024 7 _ |a 10.1093/braincomms/fcac336
|2 doi
024 7 _ |a 2128/33662
|2 Handle
024 7 _ |a 36632188
|2 pmid
024 7 _ |a WOS:000911103200004
|2 WOS
037 _ _ |a FZJ-2023-00749
082 _ _ |a 610
100 1 _ |a Kernbach, Julius M
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
260 _ _ |a [Großbritannien]
|c 2023
|b Guarantors of Brain
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673957932_26150
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology's unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical-clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Delev, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Neuloh, Georg
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Clusmann, Hans
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 5
700 1 _ |a Staartjes, Victor E
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vasella, Flavio
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Weller, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Regli, Luca
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Serra, Carlo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Krayenbühl, Niklaus
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Akeret, Kevin
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1093/braincomms/fcac336
|g Vol. 5, no. 1, p. fcac336
|0 PERI:(DE-600)3020013-1
|n 1
|p fcac336
|t Brain communications
|v 5
|y 2023
|x 2632-1297
856 4 _ |u https://juser.fz-juelich.de/record/917546/files/fcac336.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917546
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-21T13:34:18Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN COMMUN : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21