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Meta-topologies define distinct anatomical 
classes of brain tumours linked to histology 
and survival
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The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this 
study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain 
tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tu
mour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learn
ing algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation 
was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile 
and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithe
lial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular composi
tions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta- 
topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the 
strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to 
an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of ar
terial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours 
and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the 
heterogeneity of tumour biology and might add to personalized clinical decision-making.
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Graphical Abstract

Introduction
Each year, over 300 000 people worldwide are diagnosed with 
brain tumours, which cause more than 200 000 deaths and 
7 600 000 disability-adjusted life years.1 In recent decades, 
major advances in the histologic and molecular profiling of 
brain tumours have been achieved and implemented into 
classification systems and diagnostic guidelines.2,3 The most 
recent WHO Classification of Tumours of the Central 
Nervous System further strengthens this integration of mo
lecular and histological parameters.4,5 The anatomical pheno
type of brain tumours, however, is of minor relevance in this 
classification. Previous reports indicate an association be
tween tumour location and biological tumour signature.6-9

We propose a unified data-driven framework tailored to iden
tify generalizable topological patterns, which may enhance 
our understanding and the classification of brain tumours.8,9

Specific anatomical patterns are found in numerous 
neurological diseases. Neurodegenerative disorders differ 
in their atrophy patterns,10 or autoinflammatory diseases 
preferentially affect distinct CNS structures.11 The molecu
lar mechanisms behind this selective vulnerability of the 
brain, referred to as pathoclisis,12 remain largely elusive. In 
brain tumours, descriptions of topographic prevalence and 
relative spatial density also implicate differences in the ana
tomical phenotype.8,9 Defining anatomical classes of brain 
tumours requires the identification of topological relation
ships that are consistent across patients. Topographic 
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analyses can provide a description of the involvement of in
dividual anatomical structures. However, analyzing each 
neuroanatomical location as a single unit deters intuitive in
terpretation by omitting interaction effects between spatially 
adjacent or distant areas.

In contrast, studies on topology aim to incorporate the 
relative positions of the individual anatomical components 
to each other.13 We propose a novel framework tailored to 
identify generalizable patterns in brain tumour topology 
using non-negative matrix factorization (NNMF).14

Factorization methods, including NNMF, are often applied 
in the analyses of genomic signatures across various cancer 
types15-17 and provide unique advantages for the purpose 
of the present study. The inherent non-negative constraint 
of the applied algorithm enables an intuitive and direct inter
pretation of the derived patterns. In contrast, alternative di
mensionality reduction tools such as principal component 
analysis would hurt intuitive interpretation of any distribu
ted effects by recovering patterns through incomprehensible 
combinations of positive and negative cancellations of the 
extracted low-dimensional patterns.14 Further, NNMF is 
considered a sum-of-parts approach. It purposefully can ap
preciate the mutual functional dependence between individ
ual neuroanatomical locations and enables an interpretation 
on a topological level.

In the present computational study, we design an unsuper
vised data-led approach using machine learning to identify 
an optimal factorization of latent neuroanatomical meta- 
patterns in brain tumours that we henceforth call meta- 
topologies. First, we extract a low-dimensional embedding 
from the fine-grained neuroanatomical distributions using 
unsupervised pattern discovery. Second, we assess the 
subject-specific expression of the derived tumour configura
tions for their histopathologic identity and prognostic rele
vance. By introducing brain tumour meta-topologies, we 
intend to supplement our biological understanding and the 
individual profiling of brain tumours to inform individua
lized treatment decisions and assist in tailored therapy custo
mized to the single patient.18,19

Materials and methods
This study was approved by the ethical review board of the 
Canton of Zurich, Switzerland (KEK ZH 01120). 
Reporting of results is in accordance with the STROBE 
statement.20

Data source
Topographic tumour profiles were obtained from a previous
ly published and openly available single-centre cohort of 
n = 1000 consecutive patients with newly diagnosed brain 
tumours (https://doi.org/10.5281/zenodo.5457402).9 The 
eligibility criteria comprised (i) first diagnosis with consecu
tive histopathologic confirmation of a neuroepithelial tu
mour or brain metastases; (ii) no pretreatment or previous 

cranial surgery; (iii) intraparenchymal encephalic tumour lo
cation; (iv) availability of preoperative MRI data. For a de
tailed description of the acquired demographic (sex, age), 
clinical (Karnofsky Performance Status, type of surgery, 
chemotherapy, radiotherapy), radiological (presurgical 3-te
sla Skyra VD13 MRI, Siemens Healthcare, Erlangen, 
Germany, with a 24- or 32-channel receive coil) and histo
pathological (histological and molecular characterization 
of MIB-1, 1p19q, IDH, MGMT promoter methylation) 
data, we refer to the protocol of the original cohort paper.9

Each patient’s topographic tumour profile was based on a 
standardized whole-brain parcellation protocol21 and con
tained 120 anatomical annotations. We excluded 44 patients 
with primary central nervous system lymphoma and 20 tu
mours with indistinct gyral patterns for the analyses in this 
study.

Data-led deconvolution of hidden 
tumour meta-topologies
We sought to explore coherent topological anatomical pat
terns that may be hidden in the rich spatial descriptions of 
the topographic phenotypes (Supplementary Fig. 1). We ca
pitalized on NNMF as a lossy multivariate pattern discovery 
strategy.14 This unsupervised machine learning algorithm 
can identify the form and patient-specific combination of la
tent topological patterns that together compose the individ
ual neuroanatomical tumour phenotypes. These derived 
sum-of-parts representations are henceforth called meta- 
topologies. More formally, NNMF achieves a low-rank ap
proximation of the data V, with V reflecting the 120 topo
graphic summaries, with dimensions of m × n (m = number 
of anatomical items, n = number of patients), by partitioning 
the interindividual variation in anatomical items into a basic 
matrix W of k part-based factor representations. The matrix 
of the latent factor loadings H indicated how relevant each 
emerging meta-topology was to describe an individual pa
tient’s tumour phenotype. Accordingly, W and H carried m 
× k and k × n dimensions, respectively. Given by V = WH, 
the latent factorization decomposed the actual tumour 
phenotype in a particular patient into a part-based 
representation.

In contrast to alternative dimensionality reduction meth
ods, NNMF provided at least two significant advantages 
for the goal of the investigation. First, the nature of the 
neuroanatomical data encoded as non-negative values and 
the build-in non-negativity constraint of the NNMF algo
rithm allows for intuitive and meaningful interpretation. 
Alternative matrix factorization algorithms, such as princi
pal component analysis (Supplementary Fig. 2), typically in
volve complex cancellations between positive and negative 
numbers, which lack intuitive meaning and would have 
hurt the neurobiological interpretation. Second, NNMF is 
considered a parts-based learning approach14 and only al
lows strictly additive combinations of meta-topology contri
butions. That way, NNMF is compatible with the intuitive 
notion of combining non-negative parts, e.g. expressed meta- 
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topologies, to form the individual tumour phenotype. In con
trast, other classical clustering approaches, e.g. independent 
component analysis (ICA), recover independent holistic re
presentations of the data. However, the independence as
sumption made by ICA is ill-suited for learning parts-based 
representations.

Optimal factorization based on 
quantitative model evaluation
To find the optimal parts-based representation, we capita
lized on robustness measures and the ability to generalize 
to new populations. We applied a data-driven out-of-sample 
evaluation strategy to determine the most robust and gener
alizable representations of tumour meta-topologies across 
10 000 bootstrapped split-half iterations. We quantitatively 
assessed the resulting factorizations for (a) generalizability 
by measuring the increase in out-of-sample reconstruction 
error (RE)22 and (b) stability using the adjusted Rand 
Index (aRI).23,24 The optimal factorization should be re
flected in both a lower increase in out-of-sample RE and a 
higher aRI in the majority of the iterations.

We quantified the out-of-sample RE by projecting the data 
of one half onto the latent dimensions from the other half. 
The RE represents the absolute difference between the recon
structed and original matrix. Accordingly, the increase in 
out-of-sample RE demonstrates how much worse the data 
matrix is reconstructed by the basis matrix obtained from 
the model-unseen sample compared to the basis matrix re
covered from the within-sample split. A lower increase in 
out-of-sample RE compared with the within-sample RE 
hence indicates better generalizability.

Stability was assessed using the aRI. As a modified version of 
the Rand Index, the aRI is stricter and allows for improved dis
crimination.23,24 The aRI is adjusted for chance; that is, the aRI 
penalizes for the placement of two data points from different 
true clusters into the same cluster. The aRI is ensured to have 
values close to 0 for random labelling and yields a value be
tween −1 and +1, with negative values when the index is less 
than the expected index. In this study, the aRI was used to 
measure the correspondence between the factorizations de
rived from the two split samples based on the assignment of 
the anatomical items to the part-based meta-topologies. 
Higher values of aRI indicate better correspondence between 
the two factorizations derived in separate split-half realiza
tions, and a value of 1 represents an identical assignment.

We selected the most generalizable and robust factoriza
tion with rank k when the mean increase in out-of-sample 
RE of the all 10 000 split-half realizations was minimized, 
while the mean aRI was maximized.

Statistical analysis
Chi-square test was applied for categorical variables (with 
continuity correction) and ANOVA for continous data. The 
Kaplan Meier method was used to estimate survival probabil
ities of tumour meta-topologies, and the log-rank test with 

Bonferroni-Holm correction for multiple testing was applied 
for pairwise comparisons.25 Multivariable survival analysis 
was performed using the Cox proportional hazards regres
sion model.26,27 Unadjusted models were compared to mod
els with adjustment for histopathologic tumour subtype. 
Given the exploratory nature of this study, the results were in
terpreted based on the level of evidence without the definition 
of a level of statistical significance: P < 0.001: very strong evi
dence; P < 0.01: strong evidence; P < 0.05 evidence; P < 0.1 
weak evidence; P > 0.1: no evidence.28

Data and code availability
Data analyses were conducted in Python 3.8.5 (IPython 
7.21.0) and R 4.0.0 (RStudio 1.3.1093) environments. Full 
datasets and codes are available online (https://doi.org/10. 
5281/zenodo.5515356).

Results
Detailed demographic, histopathologic, and clinical cohort 
characteristics are provided in Supplementary Table 1. We 
quantitatively assessed the most robust and generalizable 
NNMF factorization for neuroepithelial tumours and brain 
metastases separately by combining the maximized mean 
aRI and the out-of-sample RE with the least relative increase 
(Supplementary Fig. 3). We extracted the optimal factoriza
tion as k = 6 meta-topologies in neuroepithelial tumours 
(Supplementary Fig. 3A) and k = 2 in brain metastases 
(Supplementary Fig. 3B).

Meta-topologies in neuroepithelial 
tumours
We identified six meta-topologies in neuroepithelial tu
mours. Each meta-topology showed a distinct composition 
of anatomical items (Fig. 1A, Supplementary Fig. 4A, 
Supplementary Table 2) and level of gyrality 
(Supplementary Table 3) that informed post-hoc naming. 
The composition of the meta-topologies did not relevantly 
change when corrected for lesion volume or hemispheric lat
eralization (Supplementary Fig. 5 and 6). Meta-topologies 
1–5 predominantly reflected supratentorial anatomy. 
Infratentorial structures were captured in meta-topology 
6. Distinct combinations of gyral, ventricular and radial tu
mour anatomy characterized the unique constellations of 
meta-topologies 1–5: we identified three meta-topologies 
with neopallial mapping (parieto-occipital, frontal, tem
poral), one with predominantly allopallial enrichment and 
one meta-topology lacking a gyral pattern (unisegmental).

Parieto-occipital neopallial neuroepithelial tumours 
(meta-topology 1, Fig. 1B)
Most relevant anatomical items included the atrium of the 
lateral ventricle (loading weight 1.19), diffuse involvement 
of the wall of the lateral ventricle (1.17), all cerebral white 
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Figure 1 Meta-topologies in neuroepithelial tumours. (A). Meta-topologies in neuroepithelial tumours with their respective anatomical 
configurations. A detailed description of the anatomical distributions is provided in Supplementary Fig. 4. (B-G). Spatial visualizations of three 
neopallial (1: parieto-occipital; 2: frontal; 3: temporal), unisegmental (4), allopallial (5) and infratentorial (6) meta-topologies. The anatomical items 
with the highest differential weight are labelled. ALC, ala lobuli centralis; Ant, anterior third; AQL, anterior quadrangular lobule; LSI, inferior 
semilunar lobule; LSS, superior semilunar lobule; LV, lateral ventricle; mid, middle third; post, posterior third; PQL, posterior quadrangular lobule; 
WM, white matter.
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matter sectors (lobar and gyral 1.11, subgyral 1.10, subcor
tical 1.09) and the cerebral cortex (1.07). In addition, meta- 
topology 1 mapped to the occipital horn and the body of the 
lateral ventricle, the subependymal corpus callosum, and 
gyri of the parieto-occipital neopallium (supramarginal, pre
cuneus, angular, middle occipital, superior parietal, cuneus). 
Neuroepithelial tumours characterized primarily by the 
parieto-occipital neopallial meta-topology 1 (n = 141) were 
multigyral in 46.1% (n = 65), unigyral in 49.6% (n = 70) 
and affected no cerebral gyrus in 4.3% (n = 6).

Frontal neopallial neuroepithelial tumours 
(meta-topology 2, Fig. 1C)
The frontal horn of the lateral ventricle featured the highest 
loading weight (0.82), followed by the body of the lateral 
ventricle (0.52), diffuse involvement of the wall of the lateral 
ventricle (0.52) and the cerebral lobar white matter sector 
(0.43). Meta-topology 2 was located in the gyral, subgyral, 
and subcortical white matter sectors, the cerebral cortex, 
and gyri of the fronto-medial neopallium (superior, middle, 
and inferior frontal gyri, anterior cingulate gyrus). 
Neuroepithelial tumours characterized by the frontal neo
pallial meta-topology 2 (n = 115), showed a multigyral in
volvement in 57.4% (n = 66), unigyral in 27.8% (n = 32), 
and no gyral involvement in 14.8% (n = 17).

Temporal neopallial neuroepithelial tumours 
(meta-topology 3, Fig. 1D)
Meta-topology 3 was uniquely defined by the temporal horn 
of the lateral ventricle (0.86), diffuse involvement of the wall 
of the lateral ventricle (0.53), and the cerebral lobar white 
matter sector (0.52). Meta-topology 3 also mapped to the 
other cerebral radial sectors (gyral, subgyral, subcortical), 
the cerebral cortex, and temporal neopallial gyri (superior, 
middle, and inferior temporal, fusiform). The atrium of the 
lateral ventricle was also affected, yet to a lesser extent 
than the temporal horn. Neuroepithelial tumours mapping 
predominantly on the temporal neopallial meta-topology 3 
(n = 69) were multigyral in 56.5% (n = 39), unigyral in 
39.1% (n = 27) and involved no gyrus in 4.3% (n = 3).

Unisegmental neuroepithelial tumours (meta-topology 
4, Fig. 1E)
Meta-topology 4 represented supratentorial neuroepithelial 
tumours mapping to the cerebral cortex (1.58) and all cere
bral white matter sectors (subcortical 1.57, subgyral 1.54, 
gyral 1.41, lobar 1.07). Ventricular involvement was primar
ily limited to focal contact to the wall of the lateral ventricle 
(1.25), specifically in the frontal horn of the lateral ventricle 
(0.30). Gyral constellations showed no relevant contribution 
to meta-topology 4. Notably, neuroepithelial tumours be
longing to meta-topology 4 (n = 179) were dominated by a 
pronounced unigyral character (82.1%, n = 147; 17.9% 
(n = 32) multigyral).

Allopallial neuroepithelial tumours (meta-topology 5, 
Fig. 1F)
Meta-topology 5 was dominated by the amygdala (0.65), the 
hippocampus (0.62), long (0.61) and short (0.60) insular 
gyri, the temporal horn of the lateral ventricle (0.57), tem
poral pole (0.56), parahippocampal gyrus (0.47), innomin
ate substance (0.44), as well as extreme (0.43) and external 
(0.41) capsules. Meta-topology 5 additionally mapped to 
the claustrum, posterior orbital gyrus, subcallosal area, pla
num polare, and thalamus, as well as the frontal horn of the 
lateral ventricle and the third ventricle. Diffuse involvement 
of the wall of the lateral ventricle added more relevantly to 
the constellation of the meta-topology than a focal ventricu
lar contact. Neuroepithelial tumours mapping predominant
ly on the allopallial meta-topology 5 (n = 70) were multigyral 
in 55.7% (n = 39), unigyral in 12.9% (n = 9) and involved no 
gyrus in 31.4% (n = 22).

Infratentorial neuroepithelial tumours 
(meta-topology 6, Fig. 1G)
The last meta-topology was determined by infratentorial 
structures: the cerebellar cortex (1.37), the lateral recess of 
the fourth ventricle (1.35), as well as the cerebellar white 
matter sectors (subcortical 1.34, sublobular 1.34, lobular 
1.33, lobar 1.27). Both the vermian and the hemispheric lo
bules contributed to the neuroanatomical constellation of 
meta-topology 6. Of the neuroepithelial tumours matching 
best on meta-topology 6 (n = 72), 98% (n = 71) did not in
volve a cerebral gyrus. There was only one tumour (1.4%) 
with multigyral anatomy.

Collectively, all identified meta-topologies in neuroepithe
lial tumours involved distinct ventricular segments and 
shared a characteristic transpallial pattern. Each supratentor
ial meta-topology presented a distinct gyral pattern except for 
meta-topology 4, which was predominantly unigyral in na
ture. The unigyral character of meta-topology 4 was uniquely 
associated with a strong contribution of a focal contact to the 
ventricle wall, while all other supratentorial meta-topologies 
depicted a diffuse ventricular involvement.

Meta-topologies in brain metastases
We quantitatively identified two meta-topologies in brain me
tastases (Fig. 2A, Supplementary Fig. 4B and Table 4). A separ
ation between infratentorial (meta-topology 1) and 
supratentorial (meta-topology 2) topological patterns emerged.

Infratentorial brain metastases (meta-topology 1, 
Fig. 2B)
The topological pattern was dominated by the cerebellar cor
tex (2.18) and the superficial cerebellar white matter sectors 
(subcortical 2.17, sublobular 1.94, lobular 1.49). In add
ition, meta-topology 1 mapped strongly to the inferior semi
lunar/gracilis lobule (1.24) and, although less pronounced, 
to the superior semilunar (0.47), biventer (0.45) and anterior 
quadrangular (0.19) lobules. There was also discrete enrich
ment in specific supratentorial items, such as the precentral, 
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postcentral, paracentral, angular gyri, and the cerebral cor
tex and cerebral subcortical white matter sector.

Supratentorial brain metastases (meta-topology 2, 
Fig. 2C)
Meta-topology 2 was again determined by superficial struc
tures, namely the cerebral cortex (2.83) and cerebral subcor
tical white matter sector (2.83), followed by the cerebral 
subgyral white matter sector (2.30). Weaker enrichment 
was seen in the cerebral gyral (1.03) and lobar (0.37) white 
matter sectors. On a gyral level, we found the strongest factor 
contribution in the middle occipital (0.36), precentral (0.34), 
posterior third of the superior frontal (0.32), and posterior 
third of the middle frontal (0.30) gyri. Meta-topology 2 
also mapped to the anterior third of the superior frontal, an
terior two-thirds of the middle frontal, the postcentral and su
pramarginal gyri, the superior parietal lobule, precuneus and 
cuneus. We observed focal contact to the wall of the lateral 
ventricle (0.26) but no diffuse involvement.

In summary, both meta-topologies in brain metastases 
showed a strong affinity to the cortex (cerebellar or cerebral) 
and superficial white matter sectors (especially subcortical). 
The observed cerebellar lobular and cerebral gyral patterns 
were consistent with the expected anatomical locations of ar
terial border zones, i.e. watershed areas. The gyral pattern 
seen in meta-topology 2 was weakly represented in meta- 
topology 1, likely due to synchronous supra- and infraten
torial metastases. Unlike in neuroepithelial tumours, 
ventricular segments and deep white matter sectors were 
not associated with meta-topologies in brain metastases.

Brain tumour meta-topologies 
map to distinct histopathologic 
and molecular profiles
The dominant histopathologic entity in neuroepithelial tu
mours was WHO Grade 4 glioma (60.7%), followed by 

Figure 2 Meta-topologies in brain metastases. (A) Meta-topologies in brain metastases with their respective anatomical configurations. A 
detailed description of the anatomical distributions is provided in Supplementary Fig. 4. (B and C) Spatial visualization of the infra- (1) and 
supratentorial (2) meta-topologies. The anatomical items with the highest differential weight are labelled. AQL, anterior quadrangular lobule; LSI, 
inferior semilunar lobule; LSS, superior semilunar lobule; LV, lateral ventricle; PQL, posterior quadrangular lobule; WM, white matter.
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gliomas of WHO Grade 3 (16.8%) and Grade 2 (8.0%) 
(Fig. 3A). The histopathologic entities spread differently to 
the identified meta-topologies in neuroepithelial tumours. 

WHO grades 2–4 gliomas, and developmental tumours 
mapped primarily to supratentorial meta-topologies. 
Ependymoma appeared in both supra- and infratentorial 

Figure 3 Histopathologic and molecular profiling of brain tumour meta-topologies. (A) Top: Relative frequency of different histologic 
entities in the neuroepithelial tumour cohort. Upper matrix: Mean expression of each meta-topology across neuroepithelial tumour entities. Lower 
matrix: Summarized mean expression of each meta-topological molecular profiling based on mutational status (mean weight) and stratified median 
MIB-1/Ki-67 proliferation index. 1p19q, 1p19q co-deletion; AP, allopallial; DT, developmental tumour; EP, ependymoma; F-NP, frontal neopallial; 
g2G, WHO Grade 2 gliomas; g3G, WHO Grade 3 glioma; g4G, WHO Grade 4 gliomas (glioblastoma/IDH-mutant Grade 4 astrocytomas); IDH1, 
isocitrate dehydrogenase (IDH) 1 mutation; IT, infratentorial; MB, medulloblastoma; MGMT, O(6)-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation; MIB1, MIB-1/Ki-67 proliferation index; PA, pilocytic astrocytoma, PO-NP, parieto-occipital neopallial; T-NP, 
temporal neopallial; US, unisegmental. (B) Top: Relative frequency of different brain metastases subtypes (depending on organ of origin). Matrix: 
Meta-topology-specific enrichment (weight) of brain metastases subtypes. GIT, gastrointestinal tract (mouth, tonsil, parotid, esophagus, stomach, 
gallbladder, pancreas, colorectal cancer); IT, infratentorial, Misc, miscellaneous (cancer of unknown primary, adrenal, leukaemia, sarcoma, 
mesothelial, thyroid); ST, supratentorial; UGT, urogenital tract (kidney, bladder; ovary, tube, uterus; testes, prostate).
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meta-topologies, while pilocytic astrocytoma and medullo
blastoma were almost exclusively associated with the infra
tentorial pattern (meta-topology 6). WHO Grade 4 
gliomas mapped to all neopallial [parieto-occipital (1), front
al (2), and temporal (3)], and the unisegmental (4) meta- 
topology but showed distinct molecular patterns. A high 
proliferation index (MIB-1 monoclonal antibodies) was as
sociated predominantly with meta-topologies 1 (parieto- 
occipital neopallial) and 3 (temporal neopallial). Tumours 
mapping to meta-topology 3 (temporal neopallial) showed 
a preference for MGMT promoter methylation. IDH-1 mu
tations mapped strongly to meta-topology 4 (unisegmental) 
and, although less prominently, to meta-topology 2 (frontal 
neopallial) and 5 (allopallial). IDH-1 wild-type status was 
prominent in meta-topology 1 (parieto-occipital neopallial) 
and, to a lesser extent, in meta-topology 3 (temporal neopal
lial). 1p19q co-deletion status was associated with meta- 
topology 2 (frontal neopallial). WHO Grade 3 gliomas 
mapped prominently to meta-topologies 2 and 4, i.e. the 
frontal neopallial and unisegmental types. Their contribu
tion to meta-topology 5 (allopallial) and meta-topology 1 
(parieto-occipital neopallial) was intermediate. WHO 
Grade 2 glioma showed a similar pattern of factor contribu
tion with dominance in meta-topologies 2 (frontal neopal
lial), 4 (unisegmental), and 5 (allopallial) and intermediate 
weight in meta-topology 1 (parieto-occipital neopallial).

Brain metastases most frequently arose from lung cancer 
(48.6%), melanoma (15.2%), or gastrointestinal cancer 
(12.8%) (Fig. 3B). Brain metastases from lung, gastrointes
tinal or breast cancer contributed relevantly to both meta- 
topologies. However, there was a pronounced preference 
of brain metastases from melanoma and urogenital cancer 
to meta-topology 2, i.e. the supratentorial type.

Brain tumour meta-topologies 
uncover survival differences
For survival analysis, patients were individually assigned to 
their highest expressed meta-topology (Tables 1 and 2). In 
neuroepithelial tumours, meta-topology 6 (infratentorial) 
showed the highest survival probability (hazard ratio 0.12, 
95% confidence interval: 0.07 to 0.23, P < 0.0001; Fig. 4A, 
Supplementary Table 5A), thus supporting the NNMF re
sults, which predominantly mapped ependymoma and pilo
cytic astrocytoma to this meta-topology. Poorest prognosis 
was seen in patients with tumours of meta-topologies 1 
(parieto-occipital neopallial, reference for Cox proportional 
hazards analysis) or 3 (temporal neopallial, hazard ratio 
1.07, 95% confidence interval: 0.77–1.49, P = 0.69) consist
ent with the histopathologic findings as both meta- 
topologies specifically mapped to WHO Grade 4 gliomas. 
The analysis emphasizes the histopathologic– and anatomic
al–clinical link uncovered by the unsupervised and data-led 
analysis strategy. To capture hidden information beyond 
the histopathologic characteristics that might be directly 
linked to the clinical course, we adjusted for the histopatho
logic entities and showed that patients with tumours 

classified as meta-topology 4 (unisegmental) demonstrated 
a survival advantage (hazard ratio 0.65, 95% confidence 
interval: 0.49–0.87, P = 0.004). The survival analysis in 
WHO Grade 4 gliomas (Fig. 4B, Supplementary Table 5B) 
provided further evidence that patient with tumours match
ing to meta-topology 4 (unisegmental) show a better overall 
survival (hazard ratio 0.65, 95% confidence interval: 0.48 to 
0.89, P = 0.007), underlining the anatomical–clinical link 
within histopathologically identical tumours. In contrast, 
brain metastases showed no evidence for a difference in sur
vival between patients with assigned to the infra- or supra
tentorial meta-topology across all analyses (brain 
metastases overall unadjusted or adjusted for origin, and 
lung cancer brain metastases) (Fig. 5A and B).

Discussion
We present a novel data-led approach using machine learn
ing to explore generalizable topological patterns across dif
ferent entities of brain tumours. Using a quantitative 
out-of-sample evaluation strategy, we extracted six distinct 
meta-topologies in neuroepithelial tumours and two meta- 
topologies in brain metastases in a cohort of 936 patients 
with fine-grained anatomical tumour annotations. The ana
tomical configuration of meta-topologies and their unique 
histopathologic profiles and prognoses provide insights 
into tumour biology and may enrich the current classifica
tion of brain tumours supporting more personalized clinical 
decision-making.

Previous studies on anatomical patterns in brain tumours 
have been restricted to descriptions of topographic preva
lence. In contrast, the use of an NNMF approach allowed 
us to find latent topological patterns across different brain 
tumours and thus to infer possible segmental tumour behav
iour in a purely data-driven fashion. The notion of latent 
meta-topologies with distinct histologic and molecular pro
files in neuroepithelial tumours emphasizes the concept of 
pathoclisis encountered in various other neurological 
disorders.10-12 The interpretation of their spatial architec
ture could enhance our biological understanding of tumour 
origin and evolution. First, all meta-topologies in neuroepi
thelial tumours shared a transpallial character, i.e. all radial 
sectors between the cortex and ventricle were equally rele
vant. This was contrasted by the radial pattern in metastases 
with cerebellar (meta-topology 1) and cerebral (meta- 
topology 2) cortico-subcortical dominance and a ventriculo
petal gradient. These findings are consistent with previous 
descriptions of the metastatic preference for the cortico- 
medullary boundary29 and a spatiotemporal behaviour of 
neuroepithelial tumours within ventriculo-cortical radial 
units.8,9 Second, except for meta-topology 4, the supraten
torial meta-topologies identified in neuroepithelial tumours 
demonstrated sharply defined gyral patterns, implying a seg
mental parenchymal growth behaviour. Phylogenetic factors 
may contribute to segmental boundaries since meta- 
topology 5 mapped predominantly to allopallial structures 
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(archipallium, paleopallium, and mesopallium), while meta- 
topologies 1–3 showed distinct neopallial patterns 
(parieto-occipital, frontal and temporal).30 In contrast, the 
parenchymal patterns in brain metastases corresponded to 
the border zones between the major cerebellar (meta- 
topology 1) and cerebral (meta-topology 2) arteries, consist
ent with previous descriptions of the metastatic tendency of 
origin in arterial watershed areas.29 Third, the meta- 
topologies in neuroepithelial tumours were strongly defined 
by distinct ventricular segments, while the ventricles did not 
contribute relevantly to the meta-topologies in brain metas
tases. In contrast to earlier beliefs, niches of neuroepithelial 
stem cells seem to persist in the adult brain serving as a source 
of continuous cell replenishment.31,32 Such specialized 

niches have been identified in the dentate gyrus and the sub
ventricular zone of the lateral ventricles.33-36 It has been fur
ther hypothesized that glioblastoma, the most common 
neuroepithelial tumour, may arise from such stem cell 
niches.37 This might also apply to other or even all tumours 
of neuroepithelial origin.38,39 Stem cell niches of distinct lo
calizations could explain the association between the auto
matically extracted meta-topologies and specific segments 
of the ventricular system. The meta-topologies identified in 
this study were characterized in particular by the frontal 
horn, atrium, temporal horn/dentate gyrus, and the lateral 
recess of the 4th ventricle. These locations are reminiscent 
of the periventricular niches harbouring stem cells and radial 
glia cells. Based on our patient-based findings, we thus 

Table 1 Cohort characteristics in neuroepithelial tumours stratified by dominant meta-topology

Meta-topology Overall 1 2 3 4 5 6 P-value

Neuroepithelial tumours overall
n 646 141 115 69 179 70 72
Sex (male) 402 (62.2) 88 (62.4) 64 (55.7) 48 (69.6) 119 (66.5) 39 (55.7) 44 (61.1) 0.271
Age (years) 50.1 (21.6) 59.6 (15.7) 54.0 (18.1) 57.7 (18.9) 49.4 (18.5) 50.4 (21.0) 19.1 (18.6) <0.001
Karnofsky Performance Status 80.0 (12.6) 78.2 (11.5) 75.8 (14.6) 78.7 (12.5) 84.8 (10.5) 79.5 (12.1) 80.4 (14.0) <0.001
Modified Rankin Scale 1.7 (1.0) 1.9 (0.9) 2.0 (1.0) 1.9 (1.0) 1.3 (0.8) 1.7 (0.9) 1.7 (1.0) <0.001
Resection (vs. biopsy) 510 (78.9) 99 (70.2) 75 (65.2) 60 (87.0) 171 (95.5) 44 (62.9) 61 (84.7) <0.001
Chemotherapy 428 (69.1) 100 (74.6) 71 (64.5) 50 (73.5) 135 (78.0) 40 (60.6) 32 (47.1) <0.001
Radiotherapy 473 (76.2) 114 (84.4) 81 (73.6) 56 (82.4) 144 (82.8) 44 (66.7) 34 (50.0) <0.001
MIB1 25.0 (20.6) 28.0 (18.0) 24.2 (18.2) 29.6 (21.4) 26.5 (22.1) 16.3 (17.0) 21.4 (24.3) 0.001
1p19q co-deletion 43 (31.4) 3 (21.4) 12 (52.2) 0 (0.0) 25 (34.7) 3 (13.6) 0 (0.0) 0.041
IDH1 mutationa 88 (19.6) 8 (7.5) 17 (19.5) 1 (2.0) 53 (37.6) 9 (20.5) 0 (0.0) <0.001
MGMT promoter methylation 95 (38.6) 28 (37.3) 18 (37.5) 17 (47.2) 24 (38.1) 7 (36.8) 1 (20.0) 0.854
WHO Grade 4 gliomas
n 401 121 76 59 91 27 5
Sex (male) 244 (64.4) 77 (63.6) 45 (59.2) 42 (71.2) 62 (68.1) 14 (51.9) 4 (80.0) 0.410
Age (years) 60.8 (14.2) 62.7 (12.3) 60.3 (14.7) 62.4 (13.7) 58.8 (15.4) 62.2 (8.6) 33.4 (25.1) <0.001
Karnofsky Performance Status 76.9 (13.2) 77.4 (12.0) 72.0 (14.7) 77.9 (12.8) 81.2 (11.4) 74.8 (12.2) 60.0 (27.1) <0.001
Modified Rankin Scale 1.9 (1.0) 2.0 (1.0) 2.2 (1.1) 1.9 (1.0) 1.6 (0.9) 2.1 (0.9) 3.2 (1.3) <0.001
Resection (vs. biopsy) 285 (75.2) 85 (70.2) 47 (61.8) 50 (84.7) 87 (95.6) 15 (55.6) 1 (20.0) <0.001
Chemotherapy 269 (73.7) 86 (74.1) 47 (64.4) 45 (77.6) 76 (85.4) 13 (52.0) 2 (50.0) 0.004
Radiotherapy 311 (85.0) 100 (85.5) 56 (76.7) 51 (87.9) 81 (91.0) 21 (84.0) 2 (50.0) 0.057
MIB1 32.5 (19.2) 30.6 (17.9) 30.0 (17.2) 32.8 (20.9) 36.8 (20.6) 31.7 (19.0) 40.6 (26.7) 0.183
1p19q co-deletion 2 (9.1) 0 (0.0) 1 (50.0) 0 (0.0) 1 (14.3) 0 (0.0) 0 (−) NaN
IDH1 mutationa 10 (3.4) 3 (3.2) 4 (6.5) 0 (0.0) 3 (4.1) 0 (0.0) 0 (0.0) 0.535
MGMT promoter methylation 82 (38.0) 28 (38.4) 14 (34.1) 17 (48.6) 17 (33.3) 6 (42.9) 0 (0.0) 0.584

The demographic, histopathologic, and clinical characteristics of the patients with neuroepithelial tumours overall and with WHO Grade 4 gliomas stratified by the dominant 
meta-topology. abased on immunohistochemistry or PCR.

Table 2 Cohort characteristics in brain metastases stratified by dominant meta-topology

Metastases overall Lung cancer metastases

Meta-topology Overall 1 2 P-value Overall 1 2 P-value

n 290 76 214 141 45 96
Gender (m) 149 (51.4) 41 (53.9) 108 (50.5) 0.70 77 (54.6) 26 (57.8) 51 (53.1) 0.74
Age (years) 60.7 (11.9) 58.5 (11.9) 61.5 (11.8) 0.064 61.4 (9.9) 58.7 (9.7) 62.6 (9.8) 0.030
Karnofsky Performance Status 76.9 (11.6) 77.5 (10.5) 76.7 (12.0) 0.62 77.7 (11.0) 78.9 (10.3) 77.2 (11.4) 0.40
Modified Rankin Scale 2.0 (0.9) 1.9 (0.8) 2.0 (0.9) 0.53 1.9 (0.8) 1.8 (0.7) 1.9 (0.9) 0.52
Resection (vs. biopsy) 277 (95.5) 72 (94.7) 205 (95.8) 0.95 136 (96.5) 43 (95.6) 93 (96.9) 1.0
Chemotherapy 175 (62.3) 49 (68.1) 126 (60.3) 0.30 94 (69.1) 32 (72.7) 62 (67.4) 0.67
Radiotherapy 255 (89.2) 67 (90.5) 188 (88.7) 0.82 128 (92.1) 41 (93.2) 87 (91.6) 1.0

The demographic, histopathologic, and clinical characteristics of the patients with brain metastases overall and lung cancer brain metastases stratified by the dominant meta-topology.
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hypothesize that specific radial ventriculo-cortical units are 
determined by their periventricular neuroepithelial stem cells 
and radial glial cells and potentially inform and shape the 
topological anatomy of neuroepithelial tumours.9,40,41

Patients with neuroepithelial tumours mapping to meta- 
topology 4 had a survival advantage after adjustment for tu
mour histology. This finding was confirmed within the group 
of patients with WHO Grade 4 gliomas. Meta-topology 4 
showed a transpallial character, comparable with the other 
supratentorial meta-topologies in neuroepithelial tumours 
but lacked a specific parenchymal pattern. The unigyral 
character of meta-topology 4 explains its lack of a specific 
gyral pattern since topological analyses depend on the inter
relationships between structures but not their mere involve
ment.13 Meta-topology 4 rather constitutes a less advanced 

tumour stage than a separate entity with the potential to pro
gress to a specific topological pattern. Meta-topology 4 was 
determined by a focal tumour contact to the ventricle wall, 
distinguishing it from the other supratentorial meta- 
topologies associated with diffuse ventricle wall involve
ment. The contact pattern to the ventricular system was 
shown to be a relevant prognostic factor and constitutes a 
cornerstone of a previously proposed anatomical staging of 
neuroepithelial tumours.9

In brain metastases, melanoma and urogenital tract me
tastases contributed almost exclusively to the supratentorial 
meta-topology. The predominant supratentorial distribution 
is in accordance with previous studies suggesting a relative 
underrepresentation of melanoma metastases to the cerebel
lum.42,43 There was no evidence for a difference in survival 

Figure 4 Meta-topologies and patient survival in primary brain tumours. (A) Survival in patients with neuroepithelial tumours stratified 
by the corresponding meta-topology with the highest weight (brain visualizations). Left: Kaplan–Meier curves. Risk tables and censoring events are 
given in Supplementary Fig. 7A. Right: Forest plots providing meta-topology-specific hazard ratios with 95% confidence intervals and P-values 
(Wald statistic z) based on unadjusted and histology-adjusted Cox proportional hazards analyses. Abbreviations: d, days. (B) Survival in patients 
with WHO Grade 4 gliomas stratified by the corresponding meta-topology with the highest weight (brain visualizations). Left: Kaplan–Meier 
curves. Risk tables and censoring events are given in Supplementary Fig. 7A. Right: Forest plots providing meta-topology-specific hazard ratios with 
95% confidence intervals and P-values (Wald statistic z) based on Cox proportional hazard analysis.
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between the infra- and supratentorial meta-topologies in 
brain metastases. The similarity may be explained by the 
fact that the presence of a specific brain tumour meta- 
topology is prognostically less critical than the stage and ad
juvant treatment options of the underlying primary disease. 
The observation that meta-topologies do not offer a survival 
stratification in brain metastases is consistent with previous 
reports that the location of brain metastases is of minor over
all prognostic significance.44

We introduce the concept of a data-driven analysis of 
topological classes in neuroepithelial tumours and brain me
tastases. The proposed machine learning framework offers 
an unsupervised approach to identifying latent brain tumour 
meta-topologies in a data-centric fashion.45 That is, the algo
rithm learns without labels directly from the raw anatomical 
profiles. Notably, information about the individual hist
ology, molecular pathology, or clinical parameters is at no 
stage available to the algorithm. Yet, we show that coherent 

and plausible patterns can be analytically retrieved based on 
the anatomical structure alone.

Meta-topologies reflect segmental anatomical tumour 
behaviour with phylo- and ontogenetic rationalization. 
In the future, this may be relevant for both tumour classi
fication and therapy. Complementing the current classifi
cation of neuroepithelial tumours, which is dominated by 
molecular and histological criteria, by a macroscopic, i.e. 
topological anatomical dimension, may enhance person
alization in the management of brain tumour patients. 
In addition, surgical or radiotherapeutic interventions 
may be tailored to the patient-specific expression of meta- 
topologies in primary brain tumours. Based on the 
hypothesis that primary brain tumours, given their neuro
epithelial nature, orient along defined radial ventriculo- 
cortical units, local therapy (surgery and radiotherapy) 
should potentially target the entire affected anatomical 
segment.

Figure 5 Meta-topologies and patient survival in brain metastases. (A) Survival in patients with brain metastases stratified by the 
corresponding meta-topology with the highest weight (brain visualizations). Left: Kaplan–Meier curves. Risk tables and censoring events are given 
in Supplementary Fig. 7B. The P-value is based on the log-rank test (chi-square statistic χ2). Right: Forest plots providing meta-topology-specific 
hazard ratios with 95% confidence intervals and P-values (Wald statistic z) based on unadjusted and origin-adjusted Cox proportional hazards 
analyses. (B) Survival in patients with lung cancer brain metastases stratified by the corresponding meta-topology with the highest weight (brain 
visualizations). Left: Kaplan–Meier curves. Risk tables and censoring events are given in Supplementary Fig. 7B. The P-value is based on the log-rank 
test (chi-square statistic χ2). Right: Forest plots providing meta-topology-specific hazard ratios with 95% confidence intervals and P-values (Wald 
statistic z) based on Cox proportional hazard analysis.
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Conclusions
We present a novel data-led framework capitalizing on non- 
negative matrix factorization to deconvolute generalizable 
topological patterns in brain tumours based solely on their 
anatomical profile. In neuroepithelial tumours, six meta- 
topologies with distinct parenchymal and ventricular com
positions were identified. We were able to show that these 
meta-topologies map to distinct histopathologic, molecular 
and clinical findings, implying the existence of a linkage be
tween the anatomical behaviour and biological signature of 
neuroepithelial tumours. This unsupervised anatomical cat
egorization may complement the current molecular and 
histological classification of brain tumours by a macroscopic 
dimension. The gained insights through meta-topologies into 
the heterogeneous biology of tumour origin and spatial evo
lution offer new approaches to interpret research data, and 
potentially inform surgical and radiotherapeutic interven
tions tailored to the unique expression of meta-topologies.
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Supplementary material is available at Brain 
Communications online.
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