000917547 001__ 917547
000917547 005__ 20240311125732.0
000917547 0247_ $$2doi$$a10.1016/j.tics.2022.11.015
000917547 0247_ $$2ISSN$$a1364-6613
000917547 0247_ $$2ISSN$$a1879-307X
000917547 0247_ $$2pmid$$a36621368
000917547 0247_ $$2WOS$$aWOS:000956055700001
000917547 037__ $$aFZJ-2023-00750
000917547 082__ $$a150
000917547 1001_ $$0P:(DE-HGF)0$$aSala, Arianna$$b0
000917547 245__ $$aBrain connectomics: time for a molecular imaging perspective?
000917547 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000917547 3367_ $$2DRIVER$$aarticle
000917547 3367_ $$2DataCite$$aOutput Types/Journal article
000917547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708006448_1296
000917547 3367_ $$2BibTeX$$aARTICLE
000917547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917547 3367_ $$00$$2EndNote$$aJournal Article
000917547 520__ $$aIn the past two decades brain connectomics has evolved into a major concept in neuroscience. However, the current perspective on brain connectivity and how it underpins brain function relies mainly on the hemodynamic signal of functional magnetic resonance imaging (MRI). Molecular imaging provides unique information inaccessible to MRI-based and electrophysiological techniques. Thus, positron emission tomography (PET) has been successfully applied to measure neural activity, neurotransmission, and proteinopathies in normal and pathological cognition. Here, we position molecular imaging within the brain connectivity framework from the perspective of timeliness, validity, reproducibility, and resolution. We encourage the neuroscientific community to take an integrative approach whereby MRI-based, electrophysiological techniques, and molecular imaging contribute to our understanding of the brain connectome.
000917547 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000917547 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917547 7001_ $$0P:(DE-HGF)0$$aLizarraga, Aldana$$b1
000917547 7001_ $$0P:(DE-HGF)0$$aCaminiti, Silvia Paola$$b2
000917547 7001_ $$0P:(DE-HGF)0$$aCalhoun, Vince D.$$b3
000917547 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4$$ufzj
000917547 7001_ $$0P:(DE-HGF)0$$aHabeck, Christian$$b5
000917547 7001_ $$0P:(DE-HGF)0$$aJamadar, Sharna D.$$b6
000917547 7001_ $$0P:(DE-HGF)0$$aPerani, Daniela$$b7
000917547 7001_ $$0P:(DE-HGF)0$$aPereira, Joana B.$$b8
000917547 7001_ $$0P:(DE-HGF)0$$aVeronese, Mattia$$b9
000917547 7001_ $$0P:(DE-HGF)0$$aYakushev, Igor$$b10$$eCorresponding author
000917547 770__ $$aOpinion
000917547 773__ $$0PERI:(DE-600)2010989-1$$a10.1016/j.tics.2022.11.015$$gp. S136466132200300X$$n4$$p353-366$$tTrends in cognitive sciences$$v27$$x1364-6613$$y2023
000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.pdf
000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.gif?subformat=icon$$xicon
000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-1440$$xicon-1440
000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-180$$xicon-180
000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-640$$xicon-640
000917547 909CO $$ooai:juser.fz-juelich.de:917547$$pVDB
000917547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000917547 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4
000917547 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich$$b10
000917547 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000917547 9141_ $$y2023
000917547 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
000917547 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
000917547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS COGN SCI : 2022$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
000917547 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bTRENDS COGN SCI : 2022$$d2023-08-19
000917547 920__ $$lyes
000917547 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000917547 980__ $$ajournal
000917547 980__ $$aVDB
000917547 980__ $$aI:(DE-Juel1)INM-7-20090406
000917547 980__ $$aUNRESTRICTED