000917547 001__ 917547 000917547 005__ 20240311125732.0 000917547 0247_ $$2doi$$a10.1016/j.tics.2022.11.015 000917547 0247_ $$2ISSN$$a1364-6613 000917547 0247_ $$2ISSN$$a1879-307X 000917547 0247_ $$2pmid$$a36621368 000917547 0247_ $$2WOS$$aWOS:000956055700001 000917547 037__ $$aFZJ-2023-00750 000917547 082__ $$a150 000917547 1001_ $$0P:(DE-HGF)0$$aSala, Arianna$$b0 000917547 245__ $$aBrain connectomics: time for a molecular imaging perspective? 000917547 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023 000917547 3367_ $$2DRIVER$$aarticle 000917547 3367_ $$2DataCite$$aOutput Types/Journal article 000917547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708006448_1296 000917547 3367_ $$2BibTeX$$aARTICLE 000917547 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000917547 3367_ $$00$$2EndNote$$aJournal Article 000917547 520__ $$aIn the past two decades brain connectomics has evolved into a major concept in neuroscience. However, the current perspective on brain connectivity and how it underpins brain function relies mainly on the hemodynamic signal of functional magnetic resonance imaging (MRI). Molecular imaging provides unique information inaccessible to MRI-based and electrophysiological techniques. Thus, positron emission tomography (PET) has been successfully applied to measure neural activity, neurotransmission, and proteinopathies in normal and pathological cognition. Here, we position molecular imaging within the brain connectivity framework from the perspective of timeliness, validity, reproducibility, and resolution. We encourage the neuroscientific community to take an integrative approach whereby MRI-based, electrophysiological techniques, and molecular imaging contribute to our understanding of the brain connectome. 000917547 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000917547 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000917547 7001_ $$0P:(DE-HGF)0$$aLizarraga, Aldana$$b1 000917547 7001_ $$0P:(DE-HGF)0$$aCaminiti, Silvia Paola$$b2 000917547 7001_ $$0P:(DE-HGF)0$$aCalhoun, Vince D.$$b3 000917547 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4$$ufzj 000917547 7001_ $$0P:(DE-HGF)0$$aHabeck, Christian$$b5 000917547 7001_ $$0P:(DE-HGF)0$$aJamadar, Sharna D.$$b6 000917547 7001_ $$0P:(DE-HGF)0$$aPerani, Daniela$$b7 000917547 7001_ $$0P:(DE-HGF)0$$aPereira, Joana B.$$b8 000917547 7001_ $$0P:(DE-HGF)0$$aVeronese, Mattia$$b9 000917547 7001_ $$0P:(DE-HGF)0$$aYakushev, Igor$$b10$$eCorresponding author 000917547 770__ $$aOpinion 000917547 773__ $$0PERI:(DE-600)2010989-1$$a10.1016/j.tics.2022.11.015$$gp. S136466132200300X$$n4$$p353-366$$tTrends in cognitive sciences$$v27$$x1364-6613$$y2023 000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.pdf 000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.gif?subformat=icon$$xicon 000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-1440$$xicon-1440 000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-180$$xicon-180 000917547 8564_ $$uhttps://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-640$$xicon-640 000917547 909CO $$ooai:juser.fz-juelich.de:917547$$pVDB 000917547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ 000917547 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4 000917547 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich$$b10 000917547 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000917547 9141_ $$y2023 000917547 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09 000917547 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09 000917547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS COGN SCI : 2022$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19 000917547 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bTRENDS COGN SCI : 2022$$d2023-08-19 000917547 920__ $$lyes 000917547 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 000917547 980__ $$ajournal 000917547 980__ $$aVDB 000917547 980__ $$aI:(DE-Juel1)INM-7-20090406 000917547 980__ $$aUNRESTRICTED