Home > Publications database > Brain connectomics: time for a molecular imaging perspective? > print |
001 | 917547 | ||
005 | 20240311125732.0 | ||
024 | 7 | _ | |a 10.1016/j.tics.2022.11.015 |2 doi |
024 | 7 | _ | |a 1364-6613 |2 ISSN |
024 | 7 | _ | |a 1879-307X |2 ISSN |
024 | 7 | _ | |a 36621368 |2 pmid |
024 | 7 | _ | |a WOS:000956055700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00750 |
082 | _ | _ | |a 150 |
100 | 1 | _ | |a Sala, Arianna |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Brain connectomics: time for a molecular imaging perspective? |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708006448_1296 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In the past two decades brain connectomics has evolved into a major concept in neuroscience. However, the current perspective on brain connectivity and how it underpins brain function relies mainly on the hemodynamic signal of functional magnetic resonance imaging (MRI). Molecular imaging provides unique information inaccessible to MRI-based and electrophysiological techniques. Thus, positron emission tomography (PET) has been successfully applied to measure neural activity, neurotransmission, and proteinopathies in normal and pathological cognition. Here, we position molecular imaging within the brain connectivity framework from the perspective of timeliness, validity, reproducibility, and resolution. We encourage the neuroscientific community to take an integrative approach whereby MRI-based, electrophysiological techniques, and molecular imaging contribute to our understanding of the brain connectome. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lizarraga, Aldana |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Caminiti, Silvia Paola |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Calhoun, Vince D. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 4 |u fzj |
700 | 1 | _ | |a Habeck, Christian |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Jamadar, Sharna D. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Perani, Daniela |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Pereira, Joana B. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Veronese, Mattia |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Yakushev, Igor |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
770 | _ | _ | |a Opinion |
773 | _ | _ | |a 10.1016/j.tics.2022.11.015 |g p. S136466132200300X |0 PERI:(DE-600)2010989-1 |n 4 |p 353-366 |t Trends in cognitive sciences |v 27 |y 2023 |x 1364-6613 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.gif?subformat=icon |x icon |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-1440 |x icon-1440 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-180 |x icon-180 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-640 |x icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:917547 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1180 |2 StatID |b Current Contents - Social and Behavioral Sciences |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2023-08-19 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b TRENDS COGN SCI : 2022 |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-19 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-19 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b TRENDS COGN SCI : 2022 |d 2023-08-19 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|