001     917547
005     20240311125732.0
024 7 _ |a 10.1016/j.tics.2022.11.015
|2 doi
024 7 _ |a 1364-6613
|2 ISSN
024 7 _ |a 1879-307X
|2 ISSN
024 7 _ |a 36621368
|2 pmid
024 7 _ |a WOS:000956055700001
|2 WOS
037 _ _ |a FZJ-2023-00750
082 _ _ |a 150
100 1 _ |a Sala, Arianna
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Brain connectomics: time for a molecular imaging perspective?
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708006448_1296
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the past two decades brain connectomics has evolved into a major concept in neuroscience. However, the current perspective on brain connectivity and how it underpins brain function relies mainly on the hemodynamic signal of functional magnetic resonance imaging (MRI). Molecular imaging provides unique information inaccessible to MRI-based and electrophysiological techniques. Thus, positron emission tomography (PET) has been successfully applied to measure neural activity, neurotransmission, and proteinopathies in normal and pathological cognition. Here, we position molecular imaging within the brain connectivity framework from the perspective of timeliness, validity, reproducibility, and resolution. We encourage the neuroscientific community to take an integrative approach whereby MRI-based, electrophysiological techniques, and molecular imaging contribute to our understanding of the brain connectome.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lizarraga, Aldana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Caminiti, Silvia Paola
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Calhoun, Vince D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
|u fzj
700 1 _ |a Habeck, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jamadar, Sharna D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Perani, Daniela
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pereira, Joana B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Veronese, Mattia
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Yakushev, Igor
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
770 _ _ |a Opinion
773 _ _ |a 10.1016/j.tics.2022.11.015
|g p. S136466132200300X
|0 PERI:(DE-600)2010989-1
|n 4
|p 353-366
|t Trends in cognitive sciences
|v 27
|y 2023
|x 1364-6613
856 4 _ |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.pdf
856 4 _ |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/917547/files/1-s2.0-S136466132200300X-main-1.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:917547
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRENDS COGN SCI : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b TRENDS COGN SCI : 2022
|d 2023-08-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21