001     917550
005     20240712112853.0
024 7 _ |a 10.48550/ARXIV.2211.12386
|2 doi
024 7 _ |a 2128/33638
|2 Handle
037 _ _ |a FZJ-2023-00752
100 1 _ |a Doncevic, Danimir
|0 P:(DE-Juel1)180221
|b 0
|u fzj
245 _ _ |a A Recursively Recurrent Neural Network (R2N2) Architecture for Learning Iterative Algorithms
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1673944665_28073
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Meta-learning of numerical algorithms for a given task consist of the data-driven identification and adaptation of an algorithmic structure and the associated hyperparameters. To limit the complexity of the meta-learning problem, neural architectures with a certain inductive bias towards favorable algorithmic structures can, and should, be used. We generalize our previously introduced Runge-Kutta neural network to a recursively recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms. In contrast to off-the-shelf deep learning approaches, it features a distinct division into modules for generation of information and for the subsequent assembly of this information towards a solution. Local information in the form of a subspace is generated by subordinate, inner, iterations of recurrent function evaluations starting at the current outer iterate. The update to the next outer iterate is computed as a linear combination of these evaluations, reducing the residual in this space, and constitutes the output of the network. We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields iterations similar to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta integrators for ordinary differential equations. Due to its modularity, the superstructure can be readily extended with functionalities needed to represent more general classes of iterative algorithms traditionally based on Taylor series expansions.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a Numerical Analysis (math.NA)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
650 _ 7 |a FOS: Mathematics
|2 Other
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 1
|u fzj
700 1 _ |a Guo, Yue
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Qianxiao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dietrich, Felix
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Kevrekidis, Ioannis G.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2211.12386
856 4 _ |u https://juser.fz-juelich.de/record/917550/files/2211.12386.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917550
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180221
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21