000917551 001__ 917551
000917551 005__ 20240712112853.0
000917551 0247_ $$2doi$$a10.1007/s11538-022-01075-7
000917551 0247_ $$2ISSN$$a0007-4985
000917551 0247_ $$2ISSN$$a0092-8240
000917551 0247_ $$2ISSN$$a1522-9602
000917551 0247_ $$2ISSN$$a2376-8398
000917551 0247_ $$2Handle$$a2128/33646
000917551 0247_ $$2pmid$$a36175705
000917551 0247_ $$2WOS$$aWOS:000861883700001
000917551 037__ $$aFZJ-2023-00753
000917551 082__ $$a510
000917551 1001_ $$0P:(DE-HGF)0$$aEl Wajeh, Mohammad$$b0
000917551 245__ $$aCan the Kuznetsov Model Replicate and Predict Cancer Growth in Humans?
000917551 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2022
000917551 3367_ $$2DRIVER$$aarticle
000917551 3367_ $$2DataCite$$aOutput Types/Journal article
000917551 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673946789_28073
000917551 3367_ $$2BibTeX$$aARTICLE
000917551 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917551 3367_ $$00$$2EndNote$$aJournal Article
000917551 520__ $$aSeveral mathematical models to predict tumor growth over time have been developed in the last decades. A central aspect of such models is the interaction of tumor cells with immune effector cells. The Kuznetsov model (Kuznetsov et al. in Bull Math Biol 56(2):295–321, 1994) is the most prominent of these models and has been used as a basis for many other related models and theoretical studies. However, none of these models have been validated with large-scale real-world data of human patients treated with cancer immunotherapy. In addition, parameter estimation of these models remains a major bottleneck on the way to model-based and data-driven medical treatment. In this study, we quantitatively fit Kuznetsov’s model to a large dataset of 1472 patients, of which 210 patients have more than six data points, by estimating the model parameters of each patient individually. We also conduct a global practical identifiability analysis for the estimated parameters. We thus demonstrate that several combinations of parameter values could lead to accurate data fitting. This opens the potential for global parameter estimation of the model, in which the values of all or some parameters are fixed for all patients. Furthermore, by omitting the last two or three data points, we show that the model can be extrapolated and predict future tumor dynamics. This paves the way for a more clinically relevant application of mathematical tumor modeling, in which the treatment strategy could be adjusted in advance according to the model’s future predictions.
000917551 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000917551 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917551 7001_ $$0P:(DE-HGF)0$$aJung, Falco$$b1
000917551 7001_ $$0P:(DE-HGF)0$$aBongartz, Dominik$$b2
000917551 7001_ $$0P:(DE-HGF)0$$aKappatou, Chrysoula Dimitra$$b3
000917551 7001_ $$0P:(DE-HGF)0$$aGhaffari Laleh, Narmin$$b4
000917551 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b5$$eCorresponding author$$ufzj
000917551 7001_ $$0P:(DE-HGF)0$$aKather, Jakob Nikolas$$b6$$eCorresponding author
000917551 773__ $$0PERI:(DE-600)1462512-X$$a10.1007/s11538-022-01075-7$$gVol. 84, no. 11, p. 130$$n11$$p130$$tBulletin of mathematical biology$$v84$$x0007-4985$$y2022
000917551 8564_ $$uhttps://juser.fz-juelich.de/record/917551/files/s11538-022-01075-7.pdf$$yOpenAccess
000917551 909CO $$ooai:juser.fz-juelich.de:917551$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917551 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000917551 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000917551 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000917551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b5$$kFZJ
000917551 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b5$$kRWTH
000917551 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000917551 9141_ $$y2022
000917551 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917551 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917551 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-05$$wger
000917551 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bB MATH BIOL : 2021$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-05
000917551 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-05
000917551 920__ $$lyes
000917551 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000917551 9801_ $$aFullTexts
000917551 980__ $$ajournal
000917551 980__ $$aVDB
000917551 980__ $$aUNRESTRICTED
000917551 980__ $$aI:(DE-Juel1)IEK-10-20170217
000917551 981__ $$aI:(DE-Juel1)ICE-1-20170217