001     917556
005     20240712112906.0
024 7 _ |a 10.48550/ARXIV.2205.13826
|2 doi
024 7 _ |a 2128/33640
|2 Handle
037 _ _ |a FZJ-2023-00758
100 1 _ |a Cramer, Eike
|0 P:(DE-Juel1)179591
|b 0
|u fzj
245 _ _ |a Multivariate Probabilistic Forecasting of Intraday Electricity Prices using Normalizing Flows
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1673945487_26809
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Electricity is traded on various markets with different time horizons and regulations. Short-term intraday trading becomes increasingly important due to the higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15min intervals in each day-ahead price interval as a four-dimensional joint probability distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. Furthermore, this work discusses the influence of different external impact factors based on literature insights and impact analysis using explainable artificial intelligence (XAI). The normalizing flow is compared to an informed selection of historical data and probabilistic forecasts using a Gaussian copula and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends with the highest accuracy and has the narrowest prediction intervals. Both the XAI analysis and the empirical experiments highlight that the immediate history of the price difference realization and the increments of the day-ahead price have the most substantial impact on the price difference.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 1
|u fzj
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2205.13826
856 4 _ |u https://juser.fz-juelich.de/record/917556/files/2205.13826.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179591
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)179591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162277
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21