000917557 001__ 917557
000917557 005__ 20240712112854.0
000917557 0247_ $$2doi$$a10.48550/ARXIV.2204.02242
000917557 0247_ $$2Handle$$a2128/33654
000917557 037__ $$aFZJ-2023-00759
000917557 1001_ $$0P:(DE-Juel1)179591$$aCramer, Eike$$b0$$ufzj
000917557 245__ $$aNormalizing Flow-based Day-Ahead Wind Power Scenario Generation for Profitable and Reliable Delivery Commitments by Wind Farm Operators
000917557 260__ $$barXiv$$c2022
000917557 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1673948861_28073
000917557 3367_ $$2ORCID$$aWORKING_PAPER
000917557 3367_ $$028$$2EndNote$$aElectronic Article
000917557 3367_ $$2DRIVER$$apreprint
000917557 3367_ $$2BibTeX$$aARTICLE
000917557 3367_ $$2DataCite$$aOutput Types/Working Paper
000917557 520__ $$aWe present a specialized scenario generation method that utilizes forecast information to generate scenarios for day-ahead scheduling problems. In particular, we use normalizing flows to generate wind power scenarios by sampling from a conditional distribution that uses wind speed forecasts to tailor the scenarios to a specific day. We apply the generated scenarios in a stochastic day-ahead bidding problem of a wind electricity producer and analyze whether the scenarios yield profitable decisions. Compared to Gaussian copulas and Wasserstein-generative adversarial networks, the normalizing flow successfully narrows the range of scenarios around the daily trends while maintaining a diverse variety of possible realizations. In the stochastic day-ahead bidding problem, the conditional scenarios from all methods lead to significantly more stable profitable results compared to an unconditional selection of historical scenarios. The normalizing flow consistently obtains the highest profits, even for small sets scenarios.
000917557 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000917557 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
000917557 588__ $$aDataset connected to DataCite
000917557 650_7 $$2Other$$aOptimization and Control (math.OC)
000917557 650_7 $$2Other$$aMachine Learning (cs.LG)
000917557 650_7 $$2Other$$aFOS: Mathematics
000917557 650_7 $$2Other$$aFOS: Computer and information sciences
000917557 7001_ $$0P:(DE-HGF)0$$aPaeleke, Leonard$$b1
000917557 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$ufzj
000917557 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b3$$eCorresponding author$$ufzj
000917557 773__ $$a10.48550/ARXIV.2204.02242
000917557 8564_ $$uhttps://juser.fz-juelich.de/record/917557/files/2204.02242.pdf$$yOpenAccess
000917557 909CO $$ooai:juser.fz-juelich.de:917557$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179591$$aForschungszentrum Jülich$$b0$$kFZJ
000917557 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179591$$aRWTH Aachen$$b0$$kRWTH
000917557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000917557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000917557 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000917557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b3$$kFZJ
000917557 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000917557 9141_ $$y2022
000917557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917557 920__ $$lyes
000917557 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000917557 9801_ $$aFullTexts
000917557 980__ $$apreprint
000917557 980__ $$aVDB
000917557 980__ $$aUNRESTRICTED
000917557 980__ $$aI:(DE-Juel1)IEK-10-20170217
000917557 981__ $$aI:(DE-Juel1)ICE-1-20170217