Home > Publications database > Normalizing Flow-based Day-Ahead Wind Power Scenario Generation for Profitable and Reliable Delivery Commitments by Wind Farm Operators > print |
001 | 917557 | ||
005 | 20240712112854.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2204.02242 |2 doi |
024 | 7 | _ | |a 2128/33654 |2 Handle |
037 | _ | _ | |a FZJ-2023-00759 |
100 | 1 | _ | |a Cramer, Eike |0 P:(DE-Juel1)179591 |b 0 |u fzj |
245 | _ | _ | |a Normalizing Flow-based Day-Ahead Wind Power Scenario Generation for Profitable and Reliable Delivery Commitments by Wind Farm Operators |
260 | _ | _ | |c 2022 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1673948861_28073 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a We present a specialized scenario generation method that utilizes forecast information to generate scenarios for day-ahead scheduling problems. In particular, we use normalizing flows to generate wind power scenarios by sampling from a conditional distribution that uses wind speed forecasts to tailor the scenarios to a specific day. We apply the generated scenarios in a stochastic day-ahead bidding problem of a wind electricity producer and analyze whether the scenarios yield profitable decisions. Compared to Gaussian copulas and Wasserstein-generative adversarial networks, the normalizing flow successfully narrows the range of scenarios around the daily trends while maintaining a diverse variety of possible realizations. In the stochastic day-ahead bidding problem, the conditional scenarios from all methods lead to significantly more stable profitable results compared to an unconditional selection of historical scenarios. The normalizing flow consistently obtains the highest profits, even for small sets scenarios. |
536 | _ | _ | |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) |0 G:(DE-HGF)POF4-1121 |c POF4-112 |f POF IV |x 0 |
536 | _ | _ | |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) |0 G:(DE-Juel1)HDS-LEE-20190612 |c HDS-LEE-20190612 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Optimization and Control (math.OC) |2 Other |
650 | _ | 7 | |a Machine Learning (cs.LG) |2 Other |
650 | _ | 7 | |a FOS: Mathematics |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
700 | 1 | _ | |a Paeleke, Leonard |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 2 |u fzj |
700 | 1 | _ | |a Dahmen, Manuel |0 P:(DE-Juel1)172097 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.48550/ARXIV.2204.02242 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917557/files/2204.02242.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:917557 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)179591 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)179591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172097 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |9 G:(DE-HGF)POF4-1121 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|