
Highlights

Dynamic Ramping for Demand Response of Processes and Energy

Systems based on Exact Linearization

Florian Joseph Baader, Philipp Althaus, André Bardow, Manuel Dahmen
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Abstract

The increasing share of volatile renewable electricity production motivates

demand response. Substantial potential for demand response is offered by

flexible processes and their local multi-energy supply systems. Simultaneous

optimization of their schedules can exploit the demand response potential,

but leads to numerically challenging problems for nonlinear dynamic pro-

cesses. In this paper, we propose to capture process dynamics using dynamic

ramping constraints. In contrast to traditional static ramping constraints,

dynamic ramping constraints are a function of the process state and can

capture high-order dynamics. We derive dynamic ramping constraints rig-

orously for the case of single-input single-output processes that are exactly

input-state linearizable. The resulting scheduling problem can be efficiently

solved as a mixed-integer linear program. In a case study, we study two flexi-

ble reactors and a multi-energy system. The proper representation of process

dynamics by dynamic ramping allows for faster transitions compared to static
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ramping constraints and thus higher economic benefits of demand response.

The proposed dynamic ramping approach is sufficiently fast for application

in online optimization.

Keywords:

Demand response, Mixed-integer dynamic optimization, Exact

linearization, Scheduling optimization

1. Introduction

Many countries are transforming their national energy systems towards

renewable energies. This transformation requires more renewable electricity

generation by wind and sun. The inherent volatility of renewable electricity

generation causes temporal imbalances of demand and supply. These im-

balances can be reduced if consumers shift their demand in time. Ideally,

both electricity grid and consumers benefit from this demand response (DR)

[1]. To incentivize demand shifting for consumers, electricity is traded with

time-varying prices at day-ahead and intra-day markets. At these markets

prices react to the current demand and supply.

Demand response is especially promising for the chemical industry. Many

energy-intensive production processes offer demand response potential, i.e.,

these processes can (i) adjust their production rate and thus energy demand,

and (ii) store their product for later use [2, 3]. However, chemical processes

consume different forms of energy – not only electricity, but also cooling, or

heating. Therefore, processes are typically supplied by a local multi-energy

system which consumes primary energy sources and exchanges electricity

with the grid, either by buying electricity from the grid or by selling electricity
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from on-site production [4]. Consequently, DR needs to consider both the

process and its local energy system in a simultaneous scheduling [5, 6, 7]

(Figure 1) that determines operational set points for a time horizon in the

order of one day [8].
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Figure 1: Simultaneous scheduling of a flexible production process and its local multi-

energy system reacts to variable electricity prices using the demand response potential of

the process by modulating the production rate ρ and thus process energy consumption.

The desired simultaneous scheduling leads to computationally intensive

optimization problems because processes and energy systems introduce two

different challenges that are hard to solve simultaneously: First, processes

often introduce scheduling-relevant nonlinear dynamics [2, 8, 9, 10, 11].

Scheduling-relevant means the time that the process needs to change be-

tween two steady states is in the same order of magnitude as electricity price

time steps, e.g., 1 hour. Second, energy system models often introduce dis-

crete decision variables resulting from often redundant units with minimum

part-load constraints [4]. Thus, the resulting problems are mixed-integer

nonlinear dynamic optimization problems which are notoriously difficult to

solve. However, scheduling optimization must be performed online in or-
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der to timely provide operational set-points for the underlying control. The

maximum allowed optimization runtime is typically between 5 and 20 min-

utes [12]. To achieve such runtimes, the optimization problem needs to be

reformulated to a simpler problem.

Online-applicable optimization runtimes of local energy systems alone can

often be achieved by mixed-integer linear programming (MILP) formulations

[13, 14, 15, 16]. The MILP problem can also integrate the production process

if the process has negligible dynamics such that quasi-steady-state assump-

tions can be used on the scheduling time scale. Scheduling can then calculate

a feasible trajectory of operational set-points. Based on this trajectory, the

real process inputs are determined by the underlying control [8]. Accord-

ingly, for negligible process dynamics, no process model is needed but only

the process energy demands must be described as piece-wise affine function

of the production rate [17, 18].

For processes with relevant dynamics, scheduling optimization still does

not necessarily need to consider the full-order process model but rather re-

quires a set of constraints that determine how fast the process can change

its production rate. Traditional first-order ramping constraints bound the

first derivative of the production rate using constant limits [15] but have

two shortcomings for simultaneous scheduling that we address in this pa-

per: First, constant ramping limits cause either unnecessarily conservative

or infeasible schedules if the achievable rate of change varies with the process

state [19, 20], which is typical for nonlinear chemical processes. Second, first-

order dynamics may not be applicable. If, for example, a chemical reactor

has a temperature-dependent production rate and is cooled through a reac-
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tor jacket with a significant thermal inertia, changing the production rate

through a change of reactor temperature would lead to at least second-order

dynamics.

To overcome both shortcomings, we propose high-order dynamic ramp-

ing constraints for simultaneous DR scheduling of processes and energy sys-

tems. For this purpose, we present a method to rigorously derive such

dynamic ramping constraints for the case of exact input-state linearizable

single-input single-output (SISO) processes based on the full-order nonlinear

process model. Our high-order dynamic ramping constraints are based on

a chain of differential equations. The highest considered time-derivative is

the ramping degree of freedom that is limited by dynamic limits as func-

tion of the process state. With time discretization by collocation [21], these

high-order dynamic ramping constraints can be converted to linear algebraic

constraints and thus allow for an MILP formulation. Thus, dynamic ramping

constraints can be readily integrated into typical MILP-based energy system

optimization models [16].

The remaining paper is structured as follows: In section 2, we introduce

the original nonlinear optimization problem for simultaneous scheduling and

the reformulated linear optimization problem with dynamic ramping con-

straints. In section 3, we present a rigorous derivation of dynamic ramping

constraints from exact input-state linearization for SISO processes. In sec-

tion 4, a case study featuring two continuous stirred tank reactors (CSTRs)

and a multi-energy system is investigated. In section 5, we discuss possible

extensions for cases that are not covered by our current assumptions. Section

6 concludes the work.
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2. Simultaneous dynamic scheduling of process and energy system

In section 2.1, we present the original simultaneous dynamic schedul-

ing problem (P1) which is a nonlinear mixed-integer dynamic optimization

(MIDO) problem. In section 2.2, we introduce the proposed MILP problem

formulation (P2) based on high-order dynamic ramping constraints.

2.1. Nonlinear mixed-integer dynamic scheduling

In the original scheduling optimization problem (P1), all decision vari-

ables χ =
(
xT ,uT , (Qprocess

dem )T , ρ, S,Φenergy, (Q
in)T , (Qout)T , (∆P)T , zTon

)T
,

which are further explained in the following, are functions of time t although

not stated explicitly to improve readability. We use the notation χ̇ to indi-

cate the first time derivative of a variable χ, and χ(k) to indicate the k-th
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time derivative. The problem reads:

min
χ∈[χl,χu]

Φenergy(tf ) (P1a)

s.t. Process model:

ẋ = f1(x) + f2(x)u ∀t ∈ [t0, tf ] (P1b)

Product quality:

0 ≥ g(x, ρ) ∀t ∈ [t0, tf ] (P1c)

Process energy demand:

Qprocess
dem,e = he(x,u) ∀e ∈ E, ∀t ∈ [t0, tf ] (P1d)

Product storage:

Ṡ = ρ− ρnom ∀t ∈ [t0, tf ] (P1e)

Energy costs:

Φ̇energy =
∑
e∈E

pe

 ∑
i∈Ccons

e

Qin
i +∆Pe

 ∀t ∈ [t0, tf ] (P1f)

Energy conversion:

Qout
i = ηi

(
Qout

i

Qmax
i

)
Qin

i ∀i ∈ C, ∀t ∈ [t0, tf ] (P1g)

Minimum part-load:

zoni Qmin
i ≤ Qout

i ≤ zoni Qmax
i , ∀i ∈ C, ∀t ∈ [t0, tf ] (P1h)

with zoni ∈ {0, 1}

Energy balance:

Qprocess
dem,e +Qinflexible

dem,e =
∑

i∈Csup
e

Qout
i +∆Pe ∀e ∈ E, ∀t ∈ [t0, tf ] (P1i)

The objective (P1a) is to minimize the cumulative energy costs Φenergy at
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final time tf . All decision variables are subject to upper and lower bounds,

χu,χl, respectively. The process model (P1b) of chemical production pro-

cesses can usually be expressed in input-affine control form [22, 23], i.e., the

time derivative of process states ẋ is given by two nonlinear functions f1(x),

f2(x) and the process degrees of freedom u. The process model is valid for

all time points between initial time t0 and final time tf . To maintain product

quality (P1c), we assume constraints g on process states x and the produc-

tion rate ρ. The process energy demand Qprocess
dem,e (P1d) for an energy form

e in the set of energy forms E is a function he(x,u) of process states x and

degrees of freedom u. For product storage (P1e), we assume a buffer storage

with filling level S. As all decision variables, the filling level S is subject

to upper and lower bounds. Moreover, the final storage filling level S(tf )

might be constrained to be greater than or equal to the initial filling level

S(t0) to avoid depletion of the storage [17]. The storage unit is filled by

the production rate ρ of the process and emptied with a constant nominal

product demand rate ρnom [10, 17, 24]. The instantaneous energy costs (P1f)

are the sum over specific price times consumption for all energy forms in E

given by the input power of energy system components Qin
i , the set of energy

system components that consume energy e, Ccons
e , the energy prices pe, and

the power exchanged with the grid ∆Pe. For the energy conversion (P1g),

the output power Qout
i of each component i in the set of components C is the

product of the input power Qin
i and the efficiency ηi. The efficiency ηi itself

is a function of the part-load fraction, i.e., the output power Qout
i divided by

the maximum output power Qmax
i [16]. The minimum part-load constraints

(P1h) for energy system components i require a binary variable zoni which en-
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sures that if the component is on the output power is between maximum and

minimum value Qmax
i and Qmin

i , respectively [4]. The energy balance (P1i)

states that for every energy form e the demands of the flexible production

process Qprocess
dem,e and other inflexible processes Qinflexible

dem,e (cf. Figure 1) must

be met by the set of energy system components that supply e, Csup
e . Addi-

tionally, power ∆Pe can be exchanged with the electricity grid. Finally, the

initial values x0 and S0, provide the initial conditions x(t0) = x0, S(t0) = S0,

and Φenergy(t0) = 0. In the original optimization problem (P1), we find differ-

ential equations (P1b, P1e, P1f), nonlinear equations (P1b, P1c, P1d, P1g),

and one binary variable (zoni ) per energy system component and timestep

in equation (P1h). To solve the optimization problem in online-applicable

runtime, (P1) needs to be simplified.

2.2. Linear mixed-integer dynamic scheduling with ramping constraints

The energy system part of problem (P1) can be reformulated as an MILP

if nonlinear efficiency curves (P1g) are approximated by piece-wise affine

functions [16]. To integrate the process into a MILP formulation, the nonlin-

ear process model (P1b - P1d) must be replaced by simpler linear equations.

As discussed in the introduction, these simpler equations must capture the

information on how fast the production rate ρ of the process can be changed

and must provide an sufficiently accurate approximation of the process energy

demand. These requirements can be fulfilled by a combination of piece-wise

affine (PWA) ramping constraints plus a PWA process energy demand model.

This combination replaces (P1b) - (P1d). Consequently, the vectors x and

u, which only occur in the removed equations (P1b) - (P1d), are removed
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from the optimization variables χ and the problem (P2) is given by:

min
χ∈[χl,χu]

Φenergy(tf ) (P2a)

s.t. PWA ramping constraints ∀t ∈ [t0, tf ] (P2b)

PWA process energy demand model ∀t ∈ [t0, tf ] (P2c)

Equations (P1e) - (P1i)

For (P2b), traditional first-order ramping constraints with static limits could

be used [15]. Here, static means that the bounds do not depend on the process

state. Such first-order static ramping constraints (SRC) use the first time

derivative of the production rate as ramping degree of freedom ν [15]:

ρ̇ = ν, with (SRCa)

νmin ≤ ν ≤ νmax (SRCb)

In SRC, the degree of freedom ν is bounded by constant limits νmin, νmax.

By applying time discretization, the static ramping constraints can be con-

verted to linear algebraic constraints. However, the restriction to constant

limits νmin, νmax often enforces a conservative parameterization for nonlinear

chemical processes where the achievable rate of change is in general non-

constant. Moreover, first-order dynamics might not be applicable, e.g., if

it is necessary to first overcome a temperature inertia before changing the

production rate.

To overcome both shortcomings of static ramping constraints, we pro-

pose high-order dynamic ramping constraints (DRC). Dynamic ramping con-

straints define the δ-th derivative of the production rate as ramping degree

of freedom ν such that the highest time derivative acts as the free variable in
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scheduling optimization. Accordingly, the highest derivative can be chosen in

every time step and the other derivatives result from time integration. The

ramping degree of freedom ν is bounded with multivariate functions that

depend on the production rate and its time derivatives:

ρ(δ) = ν, with (DRCa)

νmin
(
ρ, ρ̇, ..., ρ(δ−1)

)
≤ ν ≤ νmax

(
ρ, ρ̇, ..., ρ(δ−1)

)
(DRCb)

The process energy demand (P2c) is often modeled as a piece-wise affine

function of the production rate [17]. We use a multivariate function of the

production rate and its time derivatives because during transient operation

the energy demand can depend on the speed of the transition:

Qprocess
dem,e = he

(
ρ, ρ̇, ..., ρ(δ−1), ν

)
∀e ∈ E (1)

To discretize problem (P2), we use orthogonal collocation on finite elements

as an accurate discretization method requiring relatively few discretization

points [21]. As the differential equations introduced by the dynamic ramping

constraint (DRCa), the storage model (P1e), and the energy costs (P1f) are

all linear, a discretization with collocation in discrete time leads to linear

constraints. If additionally linear or piece-wise affine approximations are

chosen for the limits νmin and νmax (both in equation (DRCb)), the energy

demand he (in equation (1)), and the nonlinear efficiencies ηc (in equation

(P1g)), the entire problem P2 can be formulated as MILP.

The problem formulation (P2) allows to model the flexibility of chemical

production processes more accurately compared to first-order static ramping

constraints while reducing the computational complexity compared to the
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original nonlinear MIDO problem (P1). The dynamic ramping constraints

are parameterized by the order δ and the limits νmin, νmax as functions of

the process state. This parameterization could in principle be done based

on intuition or based on a suitable heuristic. In the following chapter, we

show that dynamic ramping constraints can be derived rigorously for the spe-

cial case of exact input-state linearizable single-input single-output (SISO)

processes.

3. Deriving rigorous dynamic ramping constraints

In this section, we use the concept of exact linearization from nonlinear

control [22] to rigorously derive dynamic ramping constraints. The deriva-

tion is restricted to single-input single-output (SISO) processes that are exact

input-state linearizable [22]. Before the derivation in section 3.2, we state

our assumptions in section 3.1. In section 3.3, we discuss piece-wise affine ap-

proximations of the true nonlinear ramping limits and the trade-off between

conservativeness and computational burden.

3.1. Assumptions

1. The process can be described in input-affine control normal form [22,

23].

2. The process has exactly two degrees of freedom: the control input u and

the variable production rate ρ, i.e., the process model in input-affine

control normal form is given by

ẋ = f1(x) + (f2,1(x), f2,2(x))

 u

ρ

 , (2)
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with state vector x ∈ Rn, and nonlinear functions f1(x), f2,1(x), f2,2(x)

(compare to P1b).

3. The trajectory of the production rate ρ is determined on the scheduling

level. Consequently, on the control level, the input u is the only degree

of freedom.

4. There exists an process output y that is relevant for product quality

and that should be maintained constant at its nominal value ynom. This

process output can be expressed as a function of the states, h(x), i.e.,

the quality constraint P1c simplifies from 0 ≥ g(x, ρ) to h(x) = ynom.

5. The output y = h(x) can be controlled by exact input-state lineariza-

tion using the input u [22]. In simple terms, this input-state lineariz-

ability is given if the number of inertias between input u and output y

is equal to the number of process states n and the state vector x can be

given as function of the output y and its first (n− 1) time derivatives

[22].

6. The input u is bounded by a minimum and a maximum value umin, umax,

respectively. Both values umin and umax are assumed to be constant.

3.2. Deriving nonlinear ramping limits based on exact linearization

In this section, we use exact linearization [22, 25, 26] to calculate with

which dynamics of the production rate ρ control can still hold the output

y at the nominal value ynom. From this analysis, we determine dynamic

ramping constraints that scheduling optimization has to obey when choosing

the trajectory of the production rate ρ.

The output y can be held constant if there always exists a value of the

input u that sets the derivatives of y to zero and at the same time is within the
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bounds umin, umax. Note that our analysis does not depend on the particular

type of control employed because we only analyze if a suitable input u can be

chosen on the control level in principle. Consequently, the derived ramping

constraints are a property of the process in combination with the limits on

the input u.

On the control level, the process (equation 2) is a SISO process with

the input u and the disturbance ρ that is known in advance. Note that we

consider the production rate ρ to be a disturbance on the control level as it

follows the trajectory determined on the scheduling level and thereby induces

transient operation. To ease notation of the disturbance ρ and its derivatives,

we introduce the ramping state vector

φ =



ρ

ρ̇
...

ρ(δ−2)

ρ(δ−1)


and its time derivative φ̇ =



ρ̇

ρ(2)

...

ρ(δ−1)

ν


. (3)

To compensate the disturbance introduced by varying the production

rate ρ, control manipulates the input u. Thereby, for a process fulfilling our

assumptions, control acts on the r-th derivative of the output y. The number

r is the relative degree defined as the number of times the output y = h(x) has

to be differentiated with respect to time until the input u appears explicitly.

As the process is input-state linearizable (assumption 4), the relative degree

r is equal to the number of states n = dim(x), i.e., r = n [22]. Performing

(n − 1) time differentiations of y gives the first (n − 1) derivatives of y as

nonlinear functions αk(x,φ) of process states x and ramping state vector φ
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with k = 0, ..., n − 1. Our assumption r = n implies that the first (n − 1)

derivatives of the output y do not depend on u, i.e., the term ∂αk(x,φ)
∂x

f2(x) is

equal to zero for all 0 < k < n (see, e.g., equation 4.2).

By calculating the total time derivative, the derivatives of the output y

read:

y = h(x) := α0(x)
!
= ynom (4.1)

ẏ =
∂α0(x)

∂x
ẋ =

∂α0(x)

∂x
f1(x) +

∂α0(x)

∂x
f2,1(x)︸ ︷︷ ︸

=0

u+
∂α0(x)

∂x
f2,2(x)ρ (4.2)

:= α1(x, ρ)
!
= 0

y(2) =
∂α1(x, ρ)

∂x
ẋ+

∂α1(x, ρ)

∂ρ
ρ̇ := α2(x,φ)

!
= 0 (4.3)

...
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y(n) =
∂αn−1(x,φ)

∂x
(f1(x) + f2,1(x)u+ f2,2(x)ρ)︸ ︷︷ ︸

ẋ

(4.n+1)

+
∂αn−1(x,φ)

∂
(
ρ, . . . , ρ(δ−2), ρ(δ−1)

)T︸ ︷︷ ︸
φ


ρ̇
...

ρ(δ−1)

ρ(δ)


︸ ︷︷ ︸

φ̇

=
∂αn−1(x,φ)

∂x
(f1(x) + f2,2(x)ρ) +

∂αn−1(x,φ)

∂ (ρ, . . . , ρ(δ−2))
T


ρ̇
...

ρ(δ−1)


︸ ︷︷ ︸

:=αn(x,φ)

+
∂αn−1(x,φ)

∂x
f2,1(x)︸ ︷︷ ︸

:=βu(x,φ)

u+
∂αn−1(x,φ)

∂ρ(δ−1)︸ ︷︷ ︸
:=βρ(x,φ)

ρ(δ)

= αn(x,φ) + βu(x,φ)u+ βρ(x,φ)ρ
(δ) !

= 0

with nonlinear functions αn(x,φ), βu(x, ρ), and βρ(x,φ)

Note that the number of necessary differentiations will typically be small

as processes are usually designed following the principle of local disturbance

rejection [27]. According to local disturbance rejection, control inputs u

should affect controlled outputs y as directly as possible, i.e., small relative

degrees r are generally preferred. Equation (4.n+1) shows that the derivative

y(n) is influenced by the scheduling decision, i.e., the δ-th derivative of the

production rate ρ(δ), and by the control decision, i.e., the input u. The integer

δ defines the order for our dynamic ramping constraints and thus the ramping

degree of freedom ν, which acts as free variable in scheduling optimization,
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must be equal to ρ(δ). In other words: Control can only hold the output y

constant if scheduling ramps the production rate with a δ-th order dynamic.

If a ramping dynamic with order γ < δ would be chosen, the γ-th derivative

would be the ramping degree of freedom, i.e., scheduling optimization could

perform a step-change on ρ(γ). However, this step-change would act on a

derivative y(k) with k < n, a derivative that is not influenced by the control

input u. Consequently, control has no handle to hold y(k) at zero and thus

has no handle to hold y constant. Thus, ramping with an order smaller than

δ must lead to a deviation of the output y from its nominal value irrespective

of the used control method.

For the ramping limits νmin and νmax, we rearrange equation (4.n+1) to

get the ramping degree of freedom ν, which is equal to the highest derivative

ρ(δ), as function of the input u:

ν =
−αn(x,φ)− βu(x,φ)u

βρ(x,φ)
(5)

In equation (5), the ramping degree of freedom ν can be influenced by the

input u, i.e., the bounds on u limit ν. If βu(x,φ) and βρ(x,φ) have the same

sign, we get the bounds by:

νmin(x,φ) =
−αn(x,φ)− βu(x,φ)u

max

βρ(x,φ)
(6)

νmax(x,φ) =
−αn(x,φ)− βu(x,φ)u

min

βρ(x,φ)
(7)

If βu(x,φ) and βρ(x,φ) have a different sign, umax and umin need to be

swapped in equations (6) and (7). From equation (6) follows that if schedul-

ing chooses the ramping degree of freedom to be smaller than νmin(x,φ),

control cannot hold the output y constant because for ν < νmin(x,φ) a con-

trol input u > umax would be needed.
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As the limits νmin(x,φ) and νmax(x,φ) depend on the state vector x,

we want to express x as a function of the ramping state vector φ such that

we can express the limits purely based on φ. To this end, we make use of

the assumption that the control maintains y at its nominal value ynom and

receive the following system of equations (compare to equations (4.1) - (4.n):

0 =


ynom

0
...

0

−


α0(x)

α1(x,φ)
...

αn−1(x,φ)


︸ ︷︷ ︸

α(x,φ)

(8)

Equation 8 gives a system of n nonlinear equations which implicitly define

the state vector x as a function of the ramping state vector φ. According

to the implicit function theorem, x can be calculated as a locally unique

function Γ(φ) if the n × n Jacobian matrix J(x,φ) =
(

∂α(x,φ)
∂x

)
has a non-

zero determinant. To check if a unique function Γ(φ) exists over the complete

operating range, we analytically evaluate the determinant using computer

algebra and check if the determinant is nonzero over the complete operating

range. If symbolically checking whether the determinant of the the Jacobian

is always nonzero is not possible, it might be reasonable to evaluate the

determinant of the Jacobian for a specific point, e.g., the nominal operating

point, and then proceed with trying to solve the equation system. Note that

the existence of a function Γ that gives the original states x is a condition

for exact linearization and controllability. In other words, for a well-designed

process, where the output of interest y is, in fact, controllable using the

input u over the complete operating range, the determinant of the Jacobian
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is nonzero.

In this work, we calculate Γ(φ) symbolically using the computer algebra

package SymPy [28]. With Γ(φ), we can calculate the limits νmin and νmax as

functions of the ramping state vector φ and receive the high-order dynamic

ramping constraints (equations DRCa and DRCb).

Note that the assumptions necessary to derive the dynamic ramping con-

straints are very restrictive and limit their applicability. In Section 5, we

discuss possible extensions.

3.3. Piecewise affine limits

ρmin ρnom ρmax
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Figure 2: Constraints for ramping degree of freedom ν as function of production rate

ρ. True nonlinear limits in comparison to static ramping limits, linear limits, and piece-

wise affine (PWA) limits for an illustrative case with first-order dynamics. For first-order

dynamics, the transformed state vector φ is of dimension one and equal to the production

rate ρ. Consequently, the limits on the ramping degree of freedom ν only depend on ρ.

In general, the limits νmin(φ), νmax(φ) (equations 6 and 7) are nonlin-

ear functions and linear or piece-wise affine approximations are needed to
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achieve an MILP formulation. Fortunately, if both limits are approximated

conservatively, the resulting trajectory is always feasible because the ramp-

ing degree of freedom ν stays within the true feasible range. In contrast to

static ramping constraints, approximating the nonlinear limits allows to bal-

ance conservativeness against computational complexity as we discuss in the

following for the case of first-order dynamics. If static ramping constraints or

purely linear functions are chosen, computational costs are small. However,

potentially, a high conservatism has to be accepted as a large amount of the

feasible region for the ramping degree of freedom ν is cut off. In Figure 2,

the feasible region between the nonlinear limits is much bigger than the fea-

sible region between the static limits and also bigger than the feasible region

between the linear limits. Using piece-wise affine functions, the conserva-

tive limits can enclose more of the feasible nonlinear region. However, if the

feasible region is non-convex, binary variables have to be introduced, which

significantly increase the computational burden in optimization.

In the case of first-order dynamics, the true limits on the ramping de-

gree of freedom ν can simply be plotted to choose appropriate bounds. In

case of high-order dynamics, the limits are multivariate functions and multi-

variate regression methods that give piece-wise affine functions, e.g., hinging

hyperplanes [29, 30, 31], convex region surrogates [32, 33], or artificial neural

networks with ReLU activation functions [34], must be used. However, as

discussed after equation (4n+1), typically the number of necessary differen-

tiations is expected to be small.

By employing a conservative approximation of the true nonlinear ramping

limits, the feasibility of the found solution on the original nonlinear model
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is guaranteed. As feasible area is cut off, the found optimum of the ap-

proximated MILP problem might deviate from the optimal solution of the

original MINLP problem, i.e., optimality on the original problem might not

be achieved. However, with piecewise affine functions, the true nonlinear lim-

its can, in principle, be approximated to any accuracy if a sufficient number

of piecewise linear elements is used. These piecewise linear elements however

can increase the number of binary variables leading to higher computational

cost. Thus, a suitable trade-off between accuracy of the approximation and

number of binary variables must be found.

4. Case Study

As case study, we consider two continuous stirred tank reactors (CSTRs)

with different dynamic orders in parallel configuration. The first CSTR is a

dimensionless benchmark CSTR from literature [35, 36] described by mate-

rial and energy balances. Note that, for this CSTR, the material flow rate

equals the production rate. As we use the symbol ρ for the production rate

throughout the paper, we denote the material flow rate as ρ to preserve

consistency, even if this is an unusual choice.

ċ = (1− c)
ρ

V
− cke−

N
T (CSTR1a)

Ṫ = (Tf − T )
ρ

V
+ cke−

N
T − Fcαc (T − Tc) (CSTR1b)

The CSTR states x are the concentration c and the temperature T . The

control input u is the coolant flow rate Fc with bounds Fmin
c = 0 1

h
, Fmax

c =

700 1
h
[36]. The material flow rate ρ is a degree of freedom and equals the

production rate. All other symbols are constant parameters given in Table 1.
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Following [17], we assume an oversizing of 20 % such that the dimensionless

production rate can be varied by +/- 20 % around the nominal value ρnom =

1 1
h
, i.e., ρmin = 0.8 1

h
and ρmax = 1.2 1

h
. Additionally, we assume that the

concentration has to be maintained constant at c = cnom = 0.1367 (product

2 in [35]). Thus, the output y is given by y = h(x) = c. The second CSTR

is identical to the first CSTR except for an additional inertia in the form of

a cooling jacket with temperature Tj. With an energy balance of the cooling

jacket, the model of CSTR 2 reads:

equation (CSTR1a) (CSTR2a)

Ṫ = (Tf − T )
ρ

V
+ cke−

N
T + τ1(Tj − T ) (CSTR2b)

Ṫj = τ2(T − Tj)− Fcαc (Tj − Tc) (CSTR2c)

The inverse time constants τ1, τ2 are derived from the reactor studied in [37]

and given in Table 1.

We study the two CSTRs in combination with a benchmark multi-energy

system from [16]. The waste heat of the two flexible CSTRs is integrated to

partly satisfy the heat demand of inflexible consumers (Figure 3). In other

words: The two CSTRs demand cooling but the removed heat is integrated

such that the CSTRs supply waste heat. The dimensionless waste heat Qwh

is:

Qwh = Fcαc (T − Tc) (9)

The multi-energy system consists of a combined heat and power plant

(CHP) and a boiler (Bo) that together need to satisfy a heat demand and an

electricity demand. Electricity can be bought from the grid and sold to the
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Table 1: Dimensionless CSTR model parameters from [35, 36] and time constants from

[37].

symbol value

volume V 20

reaction constant k 300 1
h

activation energy N 5

feed temperature Tf 0.3947

heat transfer coefficient αc 1.95 · 10−4

coolant temperature Tc 0.3816

inverse time constant τ1 4.84 1
h

inverse time constant τ2 14.66 1
h

grid. As the demands in [16] (available online at [38]) are calculated using

weather data from the 28th November 2018, we use the German day-ahead

market price series for electricity from the same day [39]. We scale the waste

heat of the dimensionless benchmark CSTRs such that the nominal waste

heat of each CSTR corresponds to 10% of the maximum heat demand. Both

CHP and boiler have a variable part-load efficiency and a minimum part-load

[16].

4.1. Derivation of dynamic ramping constraints

The first CSTR has two differential states and is exactly input-state lin-

earizable, i.e., the relative degree r is 2. Thus, the output y has to be

23



Simultaneous scheduling

Grid

Electricity
demand

Heat
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Figure 3: Case Study: Simultaneous scheduling of two continuous stirred tank reactors

(CSTRs) with variable production rates ρ1 and ρ2, a boiler, and a combined heat and

power plant (CHP). The waste heat of the two CSTRs, Qwh1 and Qwh2, is used to partly

satisfy a non-flexible heat demand. Additionally, a non-flexible electricity demand has to

be fulfilled.

differentiated two times until the input u = Fc appears explicitly:

y =c := α0(c)
!
= cnom (10)

ẏ =
∂α0(c)

∂c
ċ = (1− c)

ρ

V
− cke−

N
T := α1(c, T, ρ)

!
= 0 (11)

y(2) =
∂α1(c, T, ρ)

∂c
ċ+

∂α1(c, T, ρ)

∂T
Ṫ +

∂α1(c, T, ρ)

∂ρ
ρ̇ (12)

=−
[ ρ
V

+ ke−
N
T

] [
(1− c)

ρ

V
− cke−

N
T

]
−

[
ckNe−

N
T

T 2

] [
(Tf − T )

ρ

V
+ cke−

N
T − Fcαc (T − Tc)

]
+

[
1− c

V

]
ρ̇

=α2(x, ρ) + βu(x, ρ)Fc + βρ(x, ρ)ν
!
= 0,

with ν = ρ̇, α2(x, ρ) = −
[ ρ
V

+ ke−
N
T

] [
(1− c)

ρ

V
− cke−

N
T

]
−

[
ckNe−

N
T

T 2

] [
(Tf − T )

ρ

V
+ cke−

N
T

]
,

βu(x, ρ) =
ckNe−

N
T αc (T − Tc)

T 2
> 0, and βρ(x, ρ) =

1− c

V
> 0

Consequently, the production rate ρ can be changed with a first-order dy-

namic because only the first derivative of the production rate appears during
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the differentiations. The equation system to calculate the transformation

x = Γ(ρ) (compare to equation (8)) is given by equations (10) and (11).

The determinant of the Jacobian is − ckNe−
N
T

T 2 (compare to discussion after

equation (8)), which is always nonzero as the states c, T are always nonzero

in the considered operating range, and the parameters k,N are also nonzero.

Consequently, the two equations can be solved to calculate the state vector

x as function of the production rate ρ: c

T


︸ ︷︷ ︸

x

=

 cnom

N

ln ( V ck
ρ(1−c))


︸ ︷︷ ︸

Γ(ρ)

(13)

With Γ(ρ), the limits of the ramping degree of freedom ν are calculated

as a function of the production rate ρ using equations (6) and (7) (Figure

4). Based on the visualization in Figure 4, we choose purely linear dynamic

ramping limits νmin(ρ), νmax(ρ) as these give a good approximation. Note

that in many control engineering applications, linear approximations give a

reasonable approximation of nonlinear functions as long as the process is

close to a nominal operating point [22] like in the example here.

For the jacketed CSTR 2, the output c must be differentiated three times

until the input u appears. For this CSTR, we only show the functional
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Figure 4: True nonlinear limits and linear dynamic ramping constraints for the non-

jacketed CSTR 1. Static ramping constraints are indicated for comparison.

dependencies to avoid lengthy equations:

y = c := α0(c)
!
= cnom (14)

ẏ =
∂α0(c)

∂c
ċ := α1(c, T, ρ)

!
= 0 (15)

y(2) =
∂α1(c, T, ρ)

∂c
ċ+

∂α1(c, T, ρ)

∂T
Ṫ +

∂α1(c, T, ρ)

∂ρ
ρ̇ := α2(c, T, Tj, ρ, ρ̇)

!
= 0

(16)

y(3) =
∂α2(c, T, Tj, ρ, ρ̇)

∂x


ċ

Ṫ

Ṫj

+
∂α2(c, T, Tj, ρ, ρ̇)

∂φ

 ρ̇

ρ(2)

 (17)

= α3(x,φ) + βu(x,φ)Fc + βρ(x,φ)ν
!
= 0 with ν = ρ(2)

The complete derivatives are given in the Supplementary Information. For

CSTR 2, the Jacobian of equation (8) is N2αcc2k2e
− 2N

T

T 4 , which is always

nonzero. Thus, the states x can be given as a function of the ramping

state vector Γ(φ). As the second time derivative of the production rate, ρ(2),
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appears in y(3), this second derivative ρ(2) is the ramping degree of freedom

ν and the ramping state vector φ is two-dimensional φ =

 ρ

ρ̇

. In other

words: A second-order ramping constraint with δ = 2 in equation DRCa is

needed. We choose the simplified ramping limits νmin(ρ, ρ̇), νmax(ρ, ρ̇) to be

linear in both ρ and ρ̇:

νmin(ρ, ρ̇) = νmin
0 +mmin

ρ ρ+mmin
ρ̇ ρ̇ (18)

νmax(ρ, ρ̇) = νmax
0 +mmax

ρ ρ+mmax
ρ̇ ρ̇, (19)

with parameters νmin
0 , mmin

ρ , mmin
ρ̇ , νmax

0 , mmax
ρ , mmax

ρ̇ . To parameterize the

bounds, we sample the operating range using 100 equally distributed points

for ρ and 100 equally distributed points for ρ̇ such that there are 10,000

points in total. For each point, the true nonlinear limits are calculated, and

the parameters are fitted to the nonlinear limits using the normal equation

method [40]. To make the resulting limits conservative, we search through

the grid for the highest violation of the nonlinear limits and adapt νmin
0 and

νmax
0 to the safe side. As visualized in Figure 5, again the linear limits are

close to the nonlinear limits. This finding could be expected because linear

limits already give a reasonable approximation for the non-jacketed CSTR1

and the additional heat transfer terms in equations (CSTR2b) and (CSTR2c)

are purely linear.

To illustrate the dynamic ramping constraints derived for the non-

jacketed CSTR 1 and the jacketed CSTR 2, we perform a first optimization

in which we ramp the reactors from minimum production rate to maximum

production rate as fast as possible (Figure 6). For CSTR 1, the ramp up

takes 1.7 h while it would take 2.3 h (+35 %) with a static ramping con-
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Figure 5: True nonlinear limits (TNL) and corresponding linear dynamic ramping con-

straints (DRC) for the jacketed CSTR 2. The limits are functions of the production rate ρ

and its first derivative ρ̇. In this figure, the limits are given depending on ρ̇ for 3 different

values of ρ.

straint where the maximum ramping νmax is constant (Figure 4). The ramp

up of the jacketed CSTR 2 takes more than half an hour longer compared

to CSTR 1 because of the cooling jacket inertia. We cannot compare the

ramp-up of CSTR 2 to traditional first-order static ramping because y(3) can

only be held constant by manipulating Fc if the second derivative of the pro-

duction rate ρ(2) is defined (compare to equation (17)). A first-order ramp

would give a step change on the first derivative ρ̇ such that ρ(2) is not defined

and the output y must deviate from the nominal value. Depending on the

application, such deviations might be acceptable, still, they can be avoided

using a second-order ramp. Moreover, if deviations are only acceptable up to

a certain tolerance, it might be necessary to choose a first order ramp slow

enough such that deviations can be corrected by the underlying control while
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a second-order ramp might allow a faster ramp-up.
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Figure 6: Fastest possible ramp up from minimum production rate ρmin to maximum

production rate ρmax for CSTR 1 and CSTR 2. The ramping degree of freedom ν is shown

together with its dynamic limits νmin(·), νmax(·). For CSTR 1, the fastest possible ramp

up with a static ramping constraint ρsrc is shown for comparison.

As linear dynamic ramping constraints are used for the two CSTRs, we

expect the resulting formulation to be computationally efficient. Moreover,

the two shortcomings of static ramping constraints can be illustrated: While

the jacketed CSTR2 cannot be modeled accurately by static ramping con-

straints due to second-order dynamics, dynamic ramping constraints ramp

up the non-jacketed CSTR1 35 % faster than static ramping constraints.

29



4.2. Waste heat model

For the dynamic MILP scheduling problem P2, a process energy demand

model is needed (P2c). In this case study, the energy demand of the CSTRs

corresponds to the waste heat removed from the CSTRs (cf. Figure 3).

For the scheduling waste heat model, we start by investigating purely linear

functions as approximation

Qwh1 = a0,1 + a1,1ρ1 + a2,1ν1, (20)

Qwh2 = a0,2 + a1,2ρ2 + a2,2ρ̇2 + a3,2ν2, (21)

with coefficients a0,1, a1,1, a2,1, a0,2, a1,2, a2,2, a3,2. To determine the coef-

ficients, we sample the operating region using 11 equally distributed points

for ρ, ν, and ρ̇ (only CSTR2), which gives 11 × 11 points for CSTR 1 and

11 × 11 × 11 points for CSTR 2. For each point, we calculate the waste

heat from the nonlinear model and subsequently fit the coefficients using the

normal equation method [40]. The average absolute deviation between fit

and nonlinear model is 4 % of the nominal waste heat for CSTR 1 and 1 %

of the nominal waste heat for CSTR 2. As these deviations are small, we do

not study potentially more accurate piece-wise affine models for the waste

heat. Moreover, we assume that small deviations can be compensated by the

energy system components, as these components typically react much faster

than the chemical process.

4.3. Optimization problem

Based on the dynamic ramping constraints and the waste heat model, in

this subsection, we formulate the scheduling optimization problem P2.
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Following [41], the efficiency curves (equation (P1g)) for CHP and boiler

specified in [16] are discretized with one affine element to obtain a satisfactory

discretization. Note that a small number of piece-wise affine elements, i.e.,

one or two, is often sufficient for modeling univariate efficiency functions of

typical energy system components [42].

For the storage units, we enforce that the filling level is 50 % of the

maximum filling level at the beginning and the end of the day such that the

total production is fixed. We assume that the capacity of the two storage

units is equal to 3 hours of production at nominal production rate. A storage

capacity of 3 hours is the lower bound of the range studied by Schäfer et al.

[17] who consider storage capacities between 3 and 48 hours for demand

response applications. We find that the storage capacity is no limiting factor

in our case study, i.e., the bounds of the storage filling level are never reached.

Additionally, the optimization is repeated without storage constraints and

the result does not change.

As electricity prices and energy demands are given with one hour time

resolution, we use one hour timesteps for the ramping degrees of freedom

ν1, ν2, and for the on/off binaries zoni (cf. equation P1h). The remaining

variables are discretized with 2 collocation elements per hour and 4 points

per element. Note that we calculate economic profit in a simulation and

thereby automatically verify the adequacy of our time discretization.

The optimization problem is formulated using pyomo [43, 44] and py-

omo.dae [45] for discretization. We solve the optimization problem using

gurobi version 8.1.0 [46] with zero optimality gap. All calculations are per-

formed on a Windows 10 machine with an Intel(R) Core(TM) i5-8250U core
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and 24 GB RAM.

4.4. Results

The cost reductions achieved by waste heat integration relate to an oper-

ation without waste heat integration. First, we calculate the cost reductions

through waste heat integration in a scenario without DR, i.e., both CSTRs

are operated in steady state such that waste heat production is constant.

Second, in the DR scenario, we optimize the operation of energy system and

CSTRs simultaneously, i.e., we solve the dynamic ramping problem (P2).

Next, we simulate the resulting schedule on the original nonlinear process

model over the 24 hour time horizon to determine the cost reduction achieved

through waste heat integration. Third, to bound the DR potential, we solve

the original MINLP problem (P1) using the solver BARON version 20.10.16

[47]. As BARON with default settings does not provide a feasible point after

2 hours of optimization, we generate a point by fixing the integer on/off-

decisions to the values from the solution of our dynamic ramping problem

(P2), i.e., we reduce the MINLP to a nonlinear program (NLP). For this NLP,

BARON provides a feasible point, which we use as initial point to solve the

original MINLP (P1) with BARON. After 2 hours of calculation, we use the

reported lower bound to determine the maximum possible DR potential.

The DR scenario reduces 40.8 % more costs than the steady-state scenario

(Table 2). This DR improvement is only slightly below the MINLP bound,

which is 42.7 %. Further, the optimization runtime of the dynamic ramping

problem (P2) is below 2 seconds, which is short enough for online application.

Interestingly, in the DR scenario, the boiler is only active for 1 hour

(Figure 7) while the boiler is active for 11 hours in the steady-state scenario.
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Table 2: Cost reduction for the considered day achieved by waste heat integration for

different scenarios. For the MINLP solution the lower bound found after 2 hours of

optimization is reported.

Scenario Cost reduction [e] DR improvement [%]

No DR (steady-state, operation) 90.11 -

DR with dynamic ramping (P2) 126.91 40.8

MINLP bound (P1) 128.61 42.7

The reason is that for the given prices, the CHP is less expensive compared to

the boiler. Thus, the main cost reduction is achieved by shifting waste heat

in time such that the boiler can be turned off. This point is demonstrated

by repeating the DR optimization but fixing the boilers on/off-decisions to

the 11 hours of operation from the steady-state scenario. The cost reduction

is only 95.3 e, i.e., instead of 40.8% improvement through DR only 5.7% is

realized.

In our case study, the simultaneous scheduling of processes and multi-

energy system provides significant cost reductions via DR. To realize the

possible cost reductions, the discrete on/off-decisions in the multi-energy

system need to be considered during optimization. Using our high-order

dynamic ramping constraints, we achieve optimization runtimes that allow an

online application while the economic result is only slightly worse compared

to MINLP optimization.

4.5. Comparison with first-order static ramping constraints

Finally, we compare our high-order dynamic ramping constraints to first-

order static ramping constraints. As discussed, first-order ramping con-
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Figure 7: Resulting operation in the DR scenario with dynamic ramping constraints show-

ing the heat supplied by the two CSTRs, the CHP, and the boiler, and the production ρ

delivered by the two CSTRs (in red for CSTR 1 and blue for CSTR 2).

straints are not applicable to the jacketed CSTR2 and we thus focus on the

non-jacketed CSTR 1. For CSTR1, the case study result does not change

significantly if we use static instead of dynamic ramping constraints which

is for two reasons: First, the difference between static and dynamic ramping

constraints is small as we only vary the operating point by +/- 20% (Figure

4). Second, the optimal schedule shifts just enough waste heat in each time

step such that the boiler can be turned off and thus the full ramping capabil-
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ities of CSTR 1 are not exploited. To demonstrate the benefits of dynamic

ramping constraints more clearly, we expand the operating range to +/- 50 %

such that the difference between dynamic and static ramping constraints be-

comes more pronounced (Figure 8). Further, to study the ramping of CSTR

1 decoupled from on/off decisions, we modify the case study setup such that

it contains only CSTR1, a CHP, and a constant heat demand. All produced

electricity is sold to the grid. Moreover, we use a price profile that exhibits

low prices for several hours and thus motivates a long period of ramping

down. The price profile occurred on the 24th February 2018 at the German

day-ahead market [39].
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Figure 8: True nonlinear bounds, linear dynamic ramping constraints, and static ramping

constraints for the non-jacketed CSTR 1 in the modified case study.

The DR improvement is 6.7% with static ramping constraints (SRC) while

it becomes 12.2 % with dynamic ramping constraints (DRC) (Table 3), i.e.,

the dynamic ramping constraints nearly double the benefits of demand re-

sponse. For static ramping constraints, the highest realized production rate
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is 133% of the nominal production rate and the minimal production rate is

58%. In contrast, the range is 150%-54% with dynamic ramping constraints.

Especially, in the first two hours, the DRC scenario ramps up to 150% while

the SRC scenario only reaches 117% (Figure 9). This faster ramping in-

creases the DR improvement because the morning hours have cheap electric-

ity prices, which make operation of the CHP unfavorable, and thus favor a

high waste heat production. Most waste heat is produced when the reactor

ramps down as the temperature needs to be lowered during down-ramping.

While SRC ramp down starts from 117% production rate in hour 2, DRC

ramp down starts from 150% production and therefore generates more waste

heat. The modified case study demonstrates that in cases where fast ramping

is required dynamic ramping constraints can significantly improve demand

response compared to static ramping constraints.

Table 3: Cost reduction achieved by waste heat integration in modified case study.

Case Cost reduction [e] DR improvement [%]

No DR 81.1 -

DR with SRC 86.5 6.7

DR with DRC 91.0 12.2

5. Discussion of possible extensions

In this section, we discuss four possible extensions of the dynamic ramping

method, its integration with control, and the applicability of the approach.

Extension 1: In some cases, it might be favorable to vary the output y

with the production rate instead of holding it constant because varying the

36



0 5 10 15 20 25
0.000

0.025

0.050

pr
ice

 [€
/k

W
h]

sell

0 5 10 15 20 25
0

100

200

300

400

he
at

 [k
W

]

demand
CSTR (SRC)
CSTR (DRC)
CHP (DRC)

0 5 10 15 20 25
time [h]

0.5

1.0

1.5

ρ/
ρn

om
 [-

]

Figure 9: Resulting operation in the modified case study showing the heat supplied by

CSTR and CHP, and the production ρ delivered by the CSTR for the case of dynamic

ramping constraints (DRC) (red line). For comparison, the waste heat and production

rate with static ramping constraints (SRC) are shown as black dashed lines.

output gives additional flexibility for example to choose optimal steady-state

operating points. The output can be varied if a function π is chosen that

defines the output y as an n times differentiable function of the production

rate ρ. Consequently, the desired values of output y and its time derivatives
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are (compare to equations (4.1) - (4.n+1)):

y
!
= π(ρ) (22)

ẏ
!
=

∂π(ρ)

∂ρ
ρ̇ (23)

y(2)
!
=

∂2π(ρ)

∂2ρ
ρ̇2 +

∂π(ρ)

∂ρ
ρ(2) (24)

...

Still, the equation system (8) is defined and our dynamic ramping reformu-

lation can in principle be applied. Note that the equation system is more

complex to solve if the output y is not constant anymore.

Extension 2: Bounds on states are not considered in our example, how-

ever, they can be considered in a straightforward manner, as all states x are

given as a function Γ(φ) of the ramping state vector φ (compare to Sec-

tion 3.2). For example, for the jacketed CSTR 2, the jacket temperature Tj

is given as a function Γ(ρ, ρ̇) of the production rate ρ and its first deriva-

tive, ρ̇. If the equation Tj = Γ(ρ, ρ̇) can be solved for the derivative ρ̇ to

ρ̇ = Γ−1(ρ, Tj), one can insert the bounds of the state Tj into the function

Γ−1 and receive bounds on the derivative ρ̇ as a function of the production

rate ρ. Thus, bounds on the state Tj can be considered by adding a first-order

ramping constraint (ρ̇min(ρ) ≤ ρ̇ ≤ ρ̇max(ρ̇)).

Extension 3: As the presented derivation of dynamic ramping constraints

is restricted to SISO processes, we continued to work on dynamic ramping

constraints. We were able to generalize the rigorous derivation to flat MIMO

processes [48]. Note that for SISO processes, flatness is equivalent to exact

input-state linearizability, which we use in the current article. The derivation
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of dynamic ramping constraints for MIMO processes follows the same concept

as for SISO processes and is similar to the current paper’s derivation.

Extension 4: Here, we only derive dynamic ramping constraints rigor-

ously for the case that the relative degree r equals the number of states n

(r = n). The case r > n is not relevant as for r > n, the output y is not

controllable with the input u. For the case r < n, internal dynamics oc-

cur [22]. Consequently, the process state is not fully described by y and its

first r − 1 time derivatives but there are n − r internal states. Such pro-

cesses are called input-output linearizable [22]. For input-output linearizable

processes, our method would still allow to determine the order of dynamic

ramping constraints rigorously. However, the limits νmin, νmax varying with

the operation point φ would additionally depend on the unknown internal

states. Possibly, the internal states could be treated as bounded uncertainties

and robust limits that hold for all possible values of the internal states could

be calculated [49]. Alternatively, internal states might be estimated based on

the trajectory of φ, similar to the estimation of unmeasured intrinsic states

performed by Lovelett et al. [50].

Integration with control: Our scheduling with dynamic ramping con-

straints can be combined with any regulatory control. The result of the

scheduling is a trajectory for the production rate ρ. Due to the derivation of

dynamic ramping constraints, it is guaranteed that if the trajectory of the

production rate is applied to the process, the regulatory control can choose

a feasible input u ( umin ≤ u ≤ umax) that keeps the output y at its nominal

value (compare to Section 3.2). However, if the scheduling decision is to

ramp the production rate of the process as fast as possible, the input u will
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be at its bound. If in such a situation the controlled output y deviates from

its nominal value due to disturbances, noise, or model-plant mismatch, the

control might be unable react as the input u is already at its bound. Thus, a

deviation of the output y from its nominal value must be tolerated. To solve

this problem, the derivations of dynamic ramping constraints can be adapted

to maintain the input within umin − ∆ucontrol ≤ u ≤ umax − ∆ucontrol, with

a safety margin ∆ucontrol that the regulatory control can use to compensate

for disturbances.

Even though any regulatory control can be used in principle, a feedfor-

ward linearization control structure [51, 52] is particularly promising as the

feedforward part simplifies the task for the regulatory control. That is, the

nominal control input unom needed to reject the disturbances introduced by

varying the production rate is calculated using equation (4.n+1) and directly

applied to the process such that the underlying control does not have to com-

pensate for the disturbance by the production rate anymore. To reject other

disturbances that might act on the process, a simple tracking controller, e.g.,

a PID-controller, is added to stabilize the feedforward control [51, 52].

Overall, the applicability of our method is strongly limited due to the

strict assumptions. Still, as our results show that the dynamic ramping

method could bridge the gap between nonlinear process models and simpli-

fied process representations for real-time scheduling, further research regard-

ing the discussed extensions seems promising. Additionally, we argue that

the number of scheduling-relevant dynamics is typically small [36, 8]. Con-

sequently, even if the mechanistic process model under consideration might

not fulfill our assumptions, it might be possible to consider a reduced-order

40



model for the slow scheduling relevant dynamics to which dynamic ramping

constraints can be applied. For example, detailed electrolyzer models are

typical MIMO models with several dynamics [53]. However, typically, only

the slow temperature dynamic has to be considered on the hourly time scale

relevant for demand response [54, 55]. In a recent conference publication,

we show that dynamic ramping constraints can be transferred to electrolyz-

ers with slow temperature dynamics and increase demand response potential

compared to quasi-steady-state scheduling [56].

6. Conclusion

In this paper, we propose high-order dynamic ramping constraints for

the simultaneous demand response (DR) optimization of processes and their

multi-energy systems. These dynamic ramping constraints can be of high

order and the ramping limits depend on the process state. Process-state-

dependent limits enable faster transitions than typical static ramping con-

straints. Based on the notion of exact linearization, we derive dynamic ramp-

ing constraints rigorously for the case of exact input-state linearizable single-

input single-output (SISO) processes.

In a case study, we consider two continuous stirred-tank reactors (CSTRs)

with waste heat integration that are scheduled simultaneously with a multi-

energy system. Deriving dynamic ramping constraints from the two CSTR

models, we formulate an MILP optimization problem and improve the eco-

nomic value of the waste heat by 41 % compared to steady-state operation.

This benefit is close to the bound of 43% obtained from nonlinear mixed-

integer dynamic optimization (MIDO) with the original process model. Im-
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portantly, the MILP formulation based on dynamic ramping constraints al-

lows to solve the simultaneous DR optimization within seconds.

In a modified case study, we find that the DR improvement with dynamic

ramping constraints is significantly higher than that with static ramping

as the state-dependent ramping limits allow faster ramping. Consequently,

the proposed high-order dynamic ramping constraints allow to capture the

dynamic flexibility of processes better than traditional ramping constraints

and achieve optimization runtimes sufficiently fast for online optimization.
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Nomenclature

Abbreviations

CSTR continuous stirred tank reactors

DR demand response

DRC dynamic ramping constraint

MIDO mixed-integer dynamic optimization

MILP mixed-integer linear program

MIMO multi-input multi-output

MINLP mixed-integer nonlinear program

NLP nonlinear program

SISO single-input single-output

SRC static ramping constraint

Greek symbols

α nonlinear function

αc heat transfer coefficient

β nonlinear function

Γ state transformation

δ order of DRC

η efficiency

ν ramping degree of freedom

ρ production rate

Φ objective

τ time constant

φ ramping state vector

χ optimization variable
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Latin symbols

a fitting coefficient

c concentration

F flow rate

f nonlinear function

g nonlinear function

h nonlinear function

J Jacobian matrix

k preexponential factor

N scaled activation energy

n number of states

p price

Q heat flow

r relative degree

S storage filling level

T temperature

t time

u input

V volume

x differential state

y output

z discrete variable
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Sets

C energy system components

Ccons
e energy system components that consume e

Csup
e energy system components that supply e

E end energy forms

Subscripts

0 initial value

c cooling

dem demand

e energy form

f feed

i energy system component

j jacket

m linear slope

src static ramping constraint

wh waste heat

Superscripts

l lower bound

max maximum value

min minimum value

nom nominal value

u upper bound
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G. Sand, Scheduling and energy – industrial challenges and op-

portunities, Computers & Chemical Engineering 72 (2015) 183–198.

doi:10.1016/j.compchemeng.2014.05.024.

[4] P. Voll, C. Klaffke, M. Hennen, A. Bardow, Automated superstructure-

based synthesis and optimization of distributed energy supply systems,

Energy 50 (2013) 374–388. doi:10.1016/j.energy.2012.10.045.

[5] M. H. Agha, R. Thery, G. Hetreux, A. Hait, J. M. Le Lann,

Integrated production and utility system approach for optimiz-

ing industrial unit operations, Energy 35 (2) (2010) 611–627.

doi:10.1016/j.energy.2009.10.032.

[6] L. Leenders, B. Bahl, M. Hennen, A. Bardow, Coordinating scheduling

46



of production and utility system using a stackelberg game, Energy 175

(2019) 1283–1295. doi:10.1016/j.energy.2019.03.132.

[7] F. J. Baader, A. Bardow, M. Dahmen, Simultaneous mixed-integer dy-

namic scheduling of processes and their energy systems, AIChE Journal

(2022) e17741.

[8] M. Baldea, I. Harjunkoski, Integrated production scheduling and process

control: A systematic review, Computers & Chemical Engineering 71

(2014) 377–390. doi:10.1016/j.compchemeng.2014.09.002.

[9] P. Daoutidis, J. H. Lee, I. Harjunkoski, S. Skogestad, M. Baldea,

C. Georgakis, Integrating operations and control: A perspective and

roadmap for future research, Computers & Chemical Engineering 115

(2018) 179–184. doi:10.1016/j.compchemeng.2018.04.011.

[10] A. Caspari, C. Offermanns, P. Schäfer, A. Mhamdi, A. Mitsos, A flex-
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