000917568 001__ 917568
000917568 005__ 20240712112855.0
000917568 0247_ $$2doi$$a10.48550/ARXIV.2212.12507
000917568 0247_ $$2Handle$$a2128/33650
000917568 037__ $$aFZJ-2023-00770
000917568 1001_ $$0P:(DE-HGF)0$$aNolzen, Niklas$$b0
000917568 245__ $$aWhere to Market Flexibility? Optimal Participation of Industrial Energy Systems in Balancing-Power, Day-Ahead, and Continuous Intraday Electricity Markets
000917568 260__ $$barXiv$$c2022
000917568 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1673946796_29003
000917568 3367_ $$2ORCID$$aWORKING_PAPER
000917568 3367_ $$028$$2EndNote$$aElectronic Article
000917568 3367_ $$2DRIVER$$apreprint
000917568 3367_ $$2BibTeX$$aARTICLE
000917568 3367_ $$2DataCite$$aOutput Types/Working Paper
000917568 520__ $$aThe rising share of volatile renewable generation increases the demand for flexibility in the electricity grid. Flexible capacity can be offered by industrial energy systems through participation on either the continuous intraday, day-ahead, or balancing-power markets. Thus, industrial energy systems face the problem of where to market their flexible capacity. Here, we propose a method to integrate trading on the continuous intraday market into a multi-market optimization for flexible industrial energy systems. To estimate the intraday market revenues, we employ option-price theory. Subsequently, a multi-stage stochastic optimization determines an optimized bidding strategy and allocates the flexible capacity. The method is applied to a case study of a multi-energy system showing that coordinated bidding in all three considered markets reduces cost most. A sensitivity analysis for the intraday market volatility reveals changing market preferences, thus emphasizing the need for multi-market optimization. The proposed method provides a practical decision-support tool in short-term electricity and balancing-power markets.
000917568 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000917568 588__ $$aDataset connected to DataCite
000917568 650_7 $$2Other$$aOptimization and Control (math.OC)
000917568 650_7 $$2Other$$aFOS: Mathematics
000917568 7001_ $$0P:(DE-HGF)0$$aGanter, Alissa$$b1
000917568 7001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b2
000917568 7001_ $$0P:(DE-HGF)0$$aLeenders, Ludger$$b3
000917568 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000917568 773__ $$a10.48550/ARXIV.2212.12507
000917568 8564_ $$uhttps://juser.fz-juelich.de/record/917568/files/2212.12507.pdf$$yOpenAccess
000917568 909CO $$ooai:juser.fz-juelich.de:917568$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000917568 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b4
000917568 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000917568 9141_ $$y2022
000917568 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917568 920__ $$lyes
000917568 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000917568 9801_ $$aFullTexts
000917568 980__ $$apreprint
000917568 980__ $$aVDB
000917568 980__ $$aUNRESTRICTED
000917568 980__ $$aI:(DE-Juel1)IEK-10-20170217
000917568 981__ $$aI:(DE-Juel1)ICE-1-20170217