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Abstract: The rising share of volatile renewable generation increases the demand for flexibility in the
electricity grid. Flexible capacity can be offered by industrial energy systems through participation on
either the continuous intraday, day-ahead, or balancing-power markets. Thus, industrial energy systems
face the problem of where to market their flexible capacity. Here, we propose a method to integrate
trading on the continuous intraday market into a multi-market optimization for flexible industrial energy
systems. To estimate the intraday market revenues, we employ option-price theory. Subsequently, a
multi-stage stochastic optimization determines an optimized bidding strategy and allocates the flexible
capacity. The method is applied to a case study of a multi-energy system showing that coordinated
bidding in all three considered markets reduces cost most. A sensitivity analysis for the intraday market
volatility reveals changing market preferences, thus emphasizing the need for multi-market optimization.
The proposed method provides a practical decision-support tool in short-term electricity and balancing-
power markets.
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1 Introduction

1.1 The challenges and opportunities of multiple markets
The recent rise of variable renewable generation increases supply uncertainty in the electricity grid. Thus,
more short-term system balancing is needed to ensure grid stability. The growing need for grid balancing
is addressed by various measures, such as international grid control cooperation for balancing power
(Ocker and Ehrhart, 2017) and intraday markets (Koch and Hirth, 2019).

Continuous intraday markets have been introduced all over Europe in the last decade (Ocker and
Jaenisch, 2020). The intraday market continuously trades electricity until gate-closure, the market’s clos-
ing time, usually shortly before delivery. The continuous trading scheme allows adjusting for unexpected
deviations in electricity supply and demand as more precise weather forecasts are available shortly be-
fore delivery. Thereby, the continuous intraday market has become an important measure to reduce the
deviation between supply and demand before gate-closure (Koch and Hirth, 2019).

After gate-closure of the continuous intraday market, remaining deviations are compensated with
balancing power: If the overall supply is lower than demand, the transmission system operator requests
positive balancing power, and vice versa for negative balancing power (Ocker and Ehrhart, 2017).

The balancing-power market and the continuous intraday market offer different marketing opportuni-
ties for flexible capacity: On the continuous intraday market, flexible capacity can exploit price volatilities
by asset-backed trading (Löhndorf and Wozabal, 2021). Asset-backed trading continuously trades the
flexible capacity based on the real-time electricity price and the marginal electricity costs: If electricity
prices rise above marginal electricity costs, electricity is sold to the market. If electricity prices fall below
marginal electricity costs, electricity is purchased from the market. Eventually, the sum of all purchases
and sales determines the amount of electricity provided by the flexible capacity.

On the balancing-power market, flexible capacity commits positive and/or negative balancing power
for a certain time period in the future, e.g., the next day or the following week. Depending on the type of
balancing power and the market design, the remuneration consists of the capacity price for the provision
of balancing-power capacity and/or the energy price for the request of balancing power (Barbero et al.,
2020).

Thus, flexible capacity can be monetized on either the balancing-power market or the continuous
intraday market. However, bidding on short-term electricity and balancing-power markets leads to a
sequential decision-making process. E.g., in Germany, participation in the balancing-power market is
followed by a tender in the day-ahead market. Finally, after clearing of the day-ahead market, continuous
trading starts and continues until shortly before delivery. During delivery, the transmission system
operator may request balancing power.

This sequential decision-making process couples the decisions: The availability of electricity and
flexibility to be traded on one market depends on the commitments to the other markets. Hence, if
flexible capacity is monetized on one market, this capacity is no longer available to other markets.

Optimal participation in sequential electricity markets thus requires coordinated bidding (Löhndorf
and Wozabal, 2022). For coordinated bidding, the value of the opportunity to trade on the continuous
intraday market needs to be considered while deciding on participation in the balancing-power market
and day-ahead market (Klaboe and Fosso, 2013). As a result, flexibility providers face the question of
where to best market their flexibility.

1.2 Literature review on multi-market participation
Coordinated bidding considers participation in multiple markets in one single optimization problem (Aas-
gård et al., 2019). Participation in the balancing-power market and day-ahead market is usually modeled
as multi-stage stochastic optimization to account for uncertainties. Since the early work of Swider (2007)
and Boomsma et al. (2014), models have incorporated the market rules in more detail, particularly
regarding the balancing-power market.

Muche et al. (2016) consider average capacity and energy prices, thereby neglecting optimized bidding
decisions on the balancing-power market. Kumbartzky et al. (2017) and Schäfer et al. (2019) optimize
only the capacity price bids, whereas Leenders et al. (2020) model the request of balancing power, thus
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only optimizing the energy price bids. Bohlayer et al. (2020) model the market participation in the
balancing-power and day-ahead market in a multi-stage stochastic optimization model that considers
both the acceptance and the request of balancing power. The model includes the most important aspects
of the balancing-power market but disregards the continuous intraday market. Hence, the reviewed
publications (Swider, 2007) – (Bohlayer et al., 2020) do not consider the trade-offs in allocating flexibility
on all short-term markets.

Only few studies also consider intraday markets as counterpart to the balancing-power market. Dowl-
ing et al. (2017) model the participation in intraday, day-ahead, and balancing-power markets. The ap-
proach assumes simultaneous trading on all markets and, thus, does not consider the sequential decision-
making process required, e.g., for European markets. Kraft et al. (2022) model a power plant portfolio
that participates in the German balancing-power market, day-ahead market, and continuous intraday
market. This approach accounts for price uncertainties and price correlations among the markets. How-
ever, the request and the remuneration of balancing power are not explicitly modeled, thus neglecting a
potential revenue stream of the balancing-power market. Additionally, the continuous intraday market is
modeled as one stage with a single recourse decision. Hence, both Dowling et al. (2017) and Kraft et al.
(2022) do not consider continuous trading as relevant revenue stream of the intraday market.

On the continuous intraday market, market participants have to place their orders strategically since
large volatilities driven by updates in the renewables forecast characterize the electricity price (Kiesel
and Paraschiv, 2017; Kremer et al., 2021). For continuous trading, traders have to decide on the order
type and the optimal sequence of order placements in a given time frame (Guo et al., 2017). This
continuous trading can be modeled with the order-placement problem. The order-placement problem
is typically modeled with computational-expensive approaches, such as machine learning (Boukas et al.,
2021), dynamic programming (Aïd et al., 2016; Glas et al., 2020; Finnah et al., 2022) and rolling-horizon
optimization (Corinaldesi et al., 2020), and allows to derive optimized trading strategies on the continuous
intraday market. These approaches focus on integrating uncertainties from renewables during continuous
trading. However, the approaches neglect other short-term markets.

The order-placement problem determines optimized trading strategies in the continuous intraday
market. However, for optimal commitments to other markets, only potential revenues from utilizing the
available flexible capacity in the continuous intraday market need to be determined one day in advance.
To value the trading of demand response flexibility in a real-time electricity market Muthirayan et al.
(2021) propose using option-price theory. Thus, option-price theory can estimate the value of continuous
trading under uncertain prices (Weber, 2015). As an advantage, the revenue of intraday trading can
efficiently be estimated based on the price volatility without explicitly forecasting the future price curve.

1.3 Contribution of this work
Despite the growing importance of the continuous intraday market, the reviewed contributions on multi-
market participation either neglect the continuous intraday market or the intraday market stage is rep-
resented without considering its key characteristic of continuous trading.

Here, we present a coordinated bidding strategy that explicitly considers continuous trading in the
intraday market while retaining a high level of detail for the day-ahead and balancing-power market. The
coordinated bidding strategy is derived from a multi-stage stochastic optimization model. The multi-stage
stochastic optimization models the sequential decision-making process for the balancing-power market,
day-ahead market, and continuous intraday market. For the continuous intraday market, we propose
to use option-price theory to approximate the revenues from trading one day ahead. Thus, the option-
price theory allows to integrate trading on the continuous intraday market in a multi-stage stochastic
optimization providing decision support in the sequential bidding process.

By combining option-price theory and multi-stage stochastic optimization, our method covers inter-
dependencies between the balancing-power market, day-ahead market, and trading on the continuous
intraday market to answer the question: Where to market flexibility?
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Fig. 1. Trading deadlines for sequential decision-making in balancing-power market, day-ahead market,
and continuous intraday market oriented towards the German market design.

2 Method for optimized bidding strategy in sequential electricity
markets

The proposed method allocates the flexible capacity of a market participant to the balancing-power
market, the day-ahead market, and the continuous intraday market. Thus, the method determines an
optimized bidding strategy while also optimizing the operation of the considered energy system. We
base the method on our conference publication (Nolzen et al., 2022). Here, the method is extended
by balancing-power market participation, including both stages for the acceptance and the request of
balancing power.

Section 2.1 introduces the sequential decision-making process of multi-market participation. We
exemplarily present the different trading deadlines and how tenders are placed for the German balancing-
power market, day-ahead market, and continuous intraday market. However, the method is applicable
to other countries with similar sequential electricity markets.

Coordinated bidding requires to consider the value of the opportunity to trade on the continuous
intraday market. Following the ideas to model demand response (Muthirayan et al., 2021) and the
continuous intraday market (Weber, 2015; Kern et al., 2019) as an option, we present an approach to
value trading flexible capacity in the continuous intraday market in section 2.2. Therein, the value is
derived using option-price theory.

Coordinated bidding in sequential decision making leads to the stochastic process of multi-market
participation (section 2.3). In a final step, we set up a multi-stage stochastic optimization (section 2.4).

2.1 Trading deadlines in short-term electricity and balancing-power markets
This section presents the considered market design consisting of a balancing-power market, day-ahead
market, and continuous intraday market. Thereby, we study the setting of sequential electricity markets
that is common in Europe. However, we adjust our method to the German electricity market design as
Europe‘s largest electricity market. Thus, we consider the German electricity market design featuring
the most common aspects of European electricity markets without limiting the general applicability of
the method.

In the setting of sequential electricity markets, the balancing-power market, the day-ahead market,
and the continuous intraday market are assigned different trading deadlines (Fig. 1).

Balancing power is traded on the balancing-power market, one day in advance (d–1). We consider
the market for automatic frequency restoration reserve (aFRR) with an activation time of 5 minutes.
On this balancing-power market, providers of positive and negative balancing power make a tender for
four-hour time slices for the next day. The tenders have to be submitted by 9 a.m. The auction results
are published at 10 a.m.

Market participants submit a tender consisting of the amount of positive and/or negative balancing
power and the respective capacity price bid and energy price bid. The procurement of balancing power
is organized as a daily two-stage pay-as-bid auction. The first stage considers the capacity price bid that
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Fig. 2. Trading sessions on the continuous intraday market for hourly contracts for the next day. The
trading session for each of the contracts lasts from 9 hours to 32 hours.

remunerates the provision of flexible capacity for balancing power. The capacity price bids are sorted in
ascending order. Subsequently, the bids with the lowest capacity prices are accepted while the cut-off is
made at the total demand of balancing power. Among all market participants accepted in the first stage,
the second stage considers the energy price bids. The energy price bids remunerate the request of flexible
capacity. Again, the energy price bids are sorted in ascending order. If balancing power is needed the
next day, tenders with the lowest energy prices are requested first. In both stages, market participants
face a trade-off between prices and probabilities to maximize their revenues: Low capacity prices lead
to high acceptance probabilities but low capacity price revenues; Low energy prices lead to high request
probabilities but low revenues per request.

On the day-ahead market, electricity is traded as hourly contracts for the next day. The procurement
is organized as a daily, double-sided blind auction. Buy-orders and sell-orders can be handed in until the
order book closes at 12 p.m. Subsequently, aggregated electricity supply and demand curves are derived
from the orders. As a result, the market-clearing price is determined for each hour as the intersection
of the demand and supply curves. All market participants receive the market-clearing price which is the
market equilibrium price. The result of the day-ahead market auction is published at 1 p.m.

Trading on the continuous intraday market starts at 3 p.m. Here, quarter-hourly contracts, half-
hourly contracts, and hourly contracts are traded. The contracts are continuously traded for the next
day until shortly before delivery (gate-closure). Thus, the trading sessions for each of the contracts last
from 9 hours to 32 hours. Fig. 2 shows the trading session for hourly contracts. Trading on the continuous
intraday market follows the double-sided pay-as-bid principle. The trade is executed at the bidding price,
if a buy and sell order match.

In conclusion, we study a sequential market setting consisting of a two-stage pay-as-bid balancing-
power market, a pay-as-clear day-ahead market, and a continuous intraday market, thus applying our
method to a market design common in Europe for the method‘s general applicability.

2.2 Approximating the revenues from the continuous intraday market
For flexible capacity, the revenues in the continuous intraday market cannot be approximated with a
single electricity price. Additional revenues can be achieved with asset-backed trading as electricity
is continuously sold and purchased depending on the price volatility (Löhndorf and Wozabal, 2021).
Following Weber (2015) and Muthirayan et al. (2021), we propose approximating the revenues from
trading in the continuous intraday market with the option value. This approximation has the advantage
that the estimation is based on parameters available one day before delivery without explicitly forecasting
the price curve.

We derive the option value with the multiperiod binomial model based on Cox et al. (1979). The
multiperiod binomial model models each trading session on the continuous intraday market in discrete
time. Therein, the option value is derived based on the stochastic price process during a trading session
on the continuous intraday market and the marginal electricity costs for the flexible capacity.
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Option price theory assumes a risk-neutral trader who aims to replicate the option value by the
risk-neutral asset-backed trading strategy. We refer to A for an example of the risk-neutral asset-backed
trading strategy since the explicit computation of this trading strategy is not necessary for the calculation
of the option value, .

Stochastic price process

The option value requires the stochastic price process for each trading session as input parameter. In
a trading session, contracts are traded for the time step t ∈ T . For each trading session, we discretize con-
tinuous trading with Nt trading opportunities. Therein, each trading session starts with the initial price
level Sini

t . For the initial price level, the day-ahead market price is considered as a suitable assumption
(Han et al., 2022).

Subsequently, the electricity price follows a stochastic price process. Based on Alexander et al. (2012),
we model the stochastic price process as an arithmetic Brownian motion that is able to capture negative
electricity prices. Negative electricity prices have occurred more frequently in recent years, particularly
during windy or sunny periods with a low residual load (Halbrügge et al., 2021). The arithmetic Brownian
motion models the absolute price change by the price drift µt and the price volatility σt. Thus, the
arithmetic Brownian motion assumes that the absolute price deviation from the initial price level Sini

t is
normally distributed with N(µt, σ

2
t ) at gate-closure.

The multiperiod binomial model discretizes the stochastic price process. Throughout a trading session,
the price moves up ut or down dt at each trading opportunity. For the underlying arithmetic Brownian
motion, the up-movement ut and down-movement dt are determined as follows:

ut = µt ·
1

Nt
+ σt ·

√
1

Nt
∀t ∈ T,

dt = µt ·
1

Nt
− σt ·

√
1

Nt
∀t ∈ T.

(1)

In Eq. (1), the price drift µt and the price volatility σt are multiplied with the trading frequency 1
Nt

to allocate the price drift µt and the price volatility σt over the trading session.
The underlying arithmetic Brownian motion determines the last electricity price St,k as the summation

of up-movements and down-movements:

St,k = Sini
t + k · ut + (Nt − k) · dt ∀t ∈ T, k ∈ {0, 1, . . . k, . . . , Nt}. (2)

Nt + 1 last prices St,k are possible for each traded time step.

Marginal electricity cost estimation

The option value requires the marginal electricity costs mct of the market participant as a second
input parameter to estimate the revenues from risk-neutral asset-backed trading in the continuous intraday
market (cf. Fig. 9). To determine the marginal electricity costs, we calculate the influence of changing
electricity demand on the operational cost. Therein, we do not allow for trading with the electricity and
balancing-power markets because the flexibility needs to be provided by the energy system itself and not
from the interaction with the markets.

We vary the electricity demand between zero and the maximum possible electricity output for the
energy system. For each electricity demand, we determine the cost-minimal operational schedule for the
energy system by an operational optimization. Afterward, a least-square linear regression is performed to
obtain the operational cost as an affine function of the electricity demand. The marginal electricity costs
are approximated as the slope of the linear regression of the operational cost. The linear approximation
provides a good fit of the marginal electricity costs for the multi-energy system considered in section 3
(R2 > 0.97).

The marginal electricity costs depend on the time step due to changing price parameters (e.g. gas
price) and exogenous demands. For each time step t ∈ T , the procedure described above is repeated.
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Option value as revenues from intraday market trading

The option value is obtained based on the stochastic price process and the marginal electricity costs
as input parameters. The option value optsell/buy

t for positive (sell) and negative (buy) flexible capacity
for each traded time step t is derived from the multiperiod binomial model following Björk (2009) with:

opt
sell/buy
t =

Nt∑
k=0

(
Nt

k

)
︸ ︷︷ ︸

(a)

·
(
−dt

ut − dt

)k

︸ ︷︷ ︸
(b)

·
(

ut
ut − dt

)Nt−k

︸ ︷︷ ︸
(c)

·Φsell/buy(St,k)︸ ︷︷ ︸
(d)

∀t ∈ T. (3)

Compared to Björk (2009), Eq. (3) is adapted to the continuous intraday market, setting the interest
rate to zero due to the short-term nature of the market. In Eq. (3), the binomial coefficient (a) denotes the
absolute frequency that the last price k is reached. The factors (b) and (c) are the risk-neutral probabilities
for an up-movement and down-movement. The factor (d) evaluates the option value Φsell/buy(St,k) at
the end of a trading session for the sell option and the purchase option for each traded time step t and
last price k:

Φsell(St,k) =

{
St,k −mct if St,k > mct

0 if St,k ≤ mct
(4)

Φbuy(St,k) =

{
0 if St,k ≥ mct
mct − St,k if St,k < mct.

(5)

In conclusion, the option value sums up and weights the revenues from all last prices k. The option
value optsell/buy

t represents the revenues from risk-neutral asset-backed trading for positive and negative
flexible capacity.

As a result of risk-neutral asset-backed trading, either positive or negative flexible capacity is utilized.
Whether the respective flexible capacity is utilized, depends on the last price on the continuous intraday
market compared to the marginal electricity costs. We use scenario probabilities πID

t,ω that indicate the
probability of utilizing positive and negative flexible capacity in the continuous intraday market. For
this purpose, we take the distribution of the last prices and evaluate its cumulative distribution function
at the marginal electricity costs. Then, the scenario probabilities πID

t,ω are obtained from the cumulative
distribution function indicating the probability that the last price is higher than the marginal electricity
costs.

The option value optsell/buy
t and the scenario probabilities πID

t,ω are the input parameters for the multi-
stage stochastic optimization presented in the following sections 2.3 and 2.4.

2.3 Stochastic process of multi-market participation
Participation in short-term electricity markets is a sequential decision-making process (cf. section 2.1).
The sequential decision-making process is modeled as a stochastic process that considers all possible
outcomes during market participation and operation. Therein, we divide the stochastic process into four
stages. At each stage, either new information is revealed, or decisions are made.

The resulting scenario tree comprises four stages and 16 scenarios ω ∈ Ω for each time step t ∈ T
(Fig. 3). At the first stage (9 a.m. d–1), a tender is submitted for the balancing-power market. The
tender consists of a price combination c with the capacity price cp+/−

t,c and energy price ep+/−
t,c and the

amount of positive and negative balancing power BP+/−
t . After the results have been revealed at 10

a.m., the second stage (12 p.m. d–1) decides on how much electricity to sell DAsell
t,ω , or buy DA

buy
t,ω at the

day-ahead market for the next day. Electricity is purchased and sold at deterministic prices pDA,buy
t and

pDA,sell
t since the energy system acts as a price taker. The results on the delivery promises are revealed

around 1 p.m. Additionally, the second stage decides how much flexible positive capacity IDsell
t,ω (sell

option) and negative capacity IDbuy
t,ω (purchase option) are blocked for trading in the continuous intraday

market.
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Fig. 3. Stochastic process of the multi-stage stochastic optimization model to obtain the optimal bidding
strategy for a flexible market participant participating in the balancing-power market, day-ahead market,
and continuous intraday market for each time step. Each stage reveals new information or makes a decision
regarding market participation and operation.

The third stage (3 p.m. d–1 until gate-closure) considers asset-backed trading on the continuous
intraday market with the amount of blocked flexible positive and negative capacity. Depending on the
marginal electricity costs and the electricity price development, two scenarios ωID ∈ {sell, buy} arise for
the final asset-backed trading volume. Suppose the last price on the continuous intraday market is larger
than the marginal electricity costs (St,k > mct). In this scenario, positive flexible capacity is entirely
utilized, and electricity is sold on the continuous intraday market. If the last price on the continuous
intraday market is lower than marginal electricity costs (St,k < mct), negative flexible capacity is entirely
utilized, and electricity is purchased on the continuous intraday market. At the fourth stage, the units
u ∈ U adapt the operation Pu,t,ω,p according to the request scenario that materializes.

2.4 Modeling equations for the multi-stage stochastic optimization
This section presents the multi-stage stochastic optimization that models the stochastic process from the
previous section 2.3. First, the objective function and the multi-market bidding problem are presented in
section 2.4.1. In section 2.4.2, the operational constraints of the underlying flexible multi-energy system
are presented.

2.4.1 Objective function and multi-market bidding problem

The objective function minimizes the expected operational cost OPEXexp
t for all time steps t ∈ T :

min
∑
t∈T

OPEXexp
t . (6)

In the balancing-power market, the acceptance probability and the request probability depend on the
selected capacity price and energy price, respectively. Hence, participation in the balancing-power market
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introduces endogenous uncertainty to the multi-stage stochastic optimization (Hellemo et al., 2018). As
a result, the problem would be non-linear, usually requiring customized decomposition techniques, e.g.,
as in Schäfer et al. (2019).

To avoid nonlinearities, we extend the idea from Leenders et al. (2020) instead: We introduce discrete
capacity and energy prices with the set C. The set C contains each possible combination of capacity and
energy prices for positive and negative balancing power.

We then model the scenario-dependent operational cost OPEXscenario
t,c,ω for all time steps t ∈ T , price

combinations c ∈ C and scenarios ω ∈ Ω as

OPEXscenario
t,c,ω = Cgas

t,ω −RBP
t,c,ω −RDA

t,ω −RID
t,ω, ∀ t ∈ T, c ∈ C, ω ∈ Ω. (7)

The scenario-dependent operational costs comprise four terms: the cost of natural gas Cgas
t,ω , the

revenues from balancing-power market participation RBP
t,c,ω, the revenues from day-ahead market partici-

pation RDA
t,ω , and the revenues from intraday market participation RID

t,ω.
The scenario-dependent operational costs OPEXscenario

t,c,ω are weighted with the scenario probability
πt,c,ω. Thereby, we obtain the operational costs OPEXprice comb

t,c for each time step t ∈ T , and price
combination c ∈ C using:

OPEXprice comb
t,c =

∑
ω∈Ω

OPEXscenario
t,c,ω · πt,c,ω, ∀ t ∈ T, c ∈ C. (8)

The scenario-dependent operational costs OPEXscenario
t,c,ω for each scenario ω ∈ Ω are weighted with the

scenario probability:

πt,c,ω = πBP,cp
t,c,ω · πID

t,ω · π
BP,ep
t,c,ω , ∀ t ∈ T, c ∈ C, ω ∈ Ω. (9)

The scenario probability πt,c,ω is derived as product of the acceptance probability in the balancing-
power market πBP,cp

t,c,ω , the probability of positive or negative flexible capacity being utilized in the intraday
market πID

t,ω (cf. section 2.2), and the request probability of balancing power πBP,ep
t,c,ω . The request proba-

bility indicates the fraction of time that the energy system is requested within each time step t. Hence,
the request probability is zero for all scenarios where the capacity price bid is not accepted.

In the bidding problem, one price combination c is ultimately selected. This bidding decision is
modeled with the binary decision variable λBP

t,c . The variable λBP
t,c indicates if a price combination is

selected (λBP
t,c = 1) or not (λBP

t,c = 0). For each time step, one price combination is selected with:∑
c∈C

λBP
t,c = 1, ∀ t ∈ T. (10)

The price combination with the lowest operational costs is identified with a Big-M formulation with
MBP being a sufficiently large number:

OPEXexp
t ≥ OPEXprice comb

t,c −MBP · (1− λBP
t,c ), ∀ t ∈ T, c ∈ C. (11)

As we consider a cost-minimization problem, inequality constraint Eq. (11) sets the expected opera-
tional costs OPEXexp

t to the operational costs OPEXprice comb
t,c with the price combination that has the

minimal operational cost.

The cost of natural gas

The cost of natural gas Cgas
t,ω for each time step t ∈ T and scenario ω ∈ Ω are derived by multiplying

the required amount of natural gas BUY t,ω,gas and the natural gas price pgas
t

Cgas
t,ω = BUY t,ω,gas · pgas

t , ∀ t ∈ T, ω ∈ Ω. (12)
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The revenues from balancing-power market participation

The revenues in the balancing-power market RBP
t,c,ω are modeled for each time step t ∈ T , price

combination c ∈ C, and scenario ω ∈ Ω with:

RBP
t,c,ω =BP+

t · (scp+
ω · cp+

t,c + sep+
ω · ep+

t,c)

+BP−t · (scp−
ω · cp−t,c + sep−

ω · ep−t,c), ∀ t ∈ T, ω ∈ Ω.
(13)

The offered amount of positive balancing power BP+
t and negative balancing power BP−t is compen-

sated with the capacity price cp+/−
t,c and energy price ep+/−

t,c depending on the scenario ω ∈ Ω. The binary
parameters scp+

ω , scp−
ω , sep+

ω , sep−
ω are equal to 1 if compensation is awarded in the respective scenario

ω ∈ Ω. The binary parameters scp+
ω and scp−

ω indicate the acceptance in the balancing-power market for
positive and negative balancing power. The parameters scp+

ω , scp−
ω are equal to 1 if the capacity price bid

for positive and negative balancing power is accepted in scenario ω, and 0 otherwise. The binary param-
eters sep+

ω and sep−
ω indicate the request of positive and negative balancing power. The parameters sep+

ω ,
sep−
ω are equal to 1 if positive or negative balancing power is requested in scenario ω, and 0 otherwise.
Hence, we assume a full request of balancing power (cf. (Kumbartzky et al., 2017; Bohlayer et al., 2020)).

Usually, balancing power is offered for several time steps. For example, tenders are submitted for
time slices of four hours in the German balancing-power market. The price combination c of capacity
and energy price, as well as the offered amount of positive and negative balancing power have to be equal
for each four-hour time slice. Eq. (14) - (16) ensure that the tender is the same for each four-hour time
slice:

BP+
t = BP+

t+a, ∀ t ∈ T : (t− 1) | 4 = 0, a ∈ {1, 2, 3}, (14)

BP−t = BP−t+a, ∀ t ∈ T : (t− 1) | 4 = 0, a ∈ {1, 2, 3}, (15)

λBP
t,c = λBP

t+a,c, ∀ t ∈ T : (t− 1) | 4 = 0, a ∈ {1, 2, 3}. (16)

The revenues from day-ahead market participation

The revenues from day-ahead market participation RDA
t,ω for each time step t ∈ T and scenario ω ∈ Ω

equal the amount of sold electricity DAsell
t,ω and purchased electricity DAbuy

t,ω multiplied with the day-ahead
market price pDA,sell

t for selling and pDA,buy
t for purchasing electricity:

RDA
t,ω = DAsell

t,ω · p
DA,sell
t +DAbuy

t,ω · p
DA,buy
t , ∀ t ∈ T, ω ∈ Ω. (17)

Electricity can either be sold or purchased at each time step t ∈ T and scenario ω ∈ Ω. We introduce
the binary variable λDA

t,ω , which equals one if electricity is sold and equals 0 if electricity is purchased
leading to

DAsell
t,ω ≤ MDA · λDA

t,ω , ∀ t ∈ T, ω ∈ Ω, (18)

DAbuy
t,ω ≤ MDA · (1− λDA

t,ω ), ∀ t ∈ T, ω ∈ Ω. (19)

Thereby, we restrict the purchase and selling of electricity at each time step t ∈ T and scenario ω ∈ Ω
to the maximum possible amount of electricity MDA to be traded on the day-ahead market.

The sequential decision-making process in the markets is modeled with non-anticipativity constraints
(Birge and Louveaux, 2011). Non-anticipativity constraints are used in stochastic programming to restrict
the recourse of the multi-stage stochastic optimization. Hence, decisions taken at previous stages cannot
be changed at later stages.

The non-anticipativity constraints for the trading volumes on the day-ahead market are formulated
as follows:

DAsell
t,ω = DAsell

t,ω′ , ∀ t ∈ T, ω, ω′ ∈ Ω : (scp+
ω , scp−

ω ) = (scp+
ω′ , scp−

ω′ ), (20)

DAbuy
t,ω = DAbuy

t,ω′ , ∀ t ∈ T, ω, ω′ ∈ Ω : (scp+
ω , scp−

ω ) = (scp+
ω′ , scp−

ω′ ). (21)
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After the balancing-power market auction, Eq. (20) and (21) ensure that the same trading volumes
are submitted to the day-ahead market at each branch of the second stage. If the binary parameter scp+

ω

and scp−
ω′ are equal in scenario ω and ω′, Eq. (20) and (21) equate the trading volumes on the day-ahead

market.

The revenues from intraday market participation

The revenues from trading flexibility on the continuous intraday market RID
t,ω are determined with

the option value. We assume that positive flexible capacity IDsell
t,ω , and negative flexible capacity IDbuy

t,ω

can be monetized on the continuous intraday market. Hence, the revenues in the intraday market RID
t,ω

are determined based on the amount of positive and negative flexible capacity IDsell
t,ω and IDbuy

t,ω blocked
for asset-backed trading, the respective option value optsell

t and optbuy
t , and the marginal electricity costs

mct.
The option value is realized independently of the last price in the intraday market. However, depending

on the last price in the intraday market compared to the marginal electricity costs, two contrary scenarios
ωID ∈ {sell, buy} arise for the utilization of flexible capacity: If the last price is higher than the marginal
electricity costs, the multi-energy system supplies electricity to the grid to fulfill the delivery promise on
the intraday market (sell). This scenario utilizes the positive flexible capacity IDsell

t,ω . If the last electricity
price is lower than the marginal electricity costs, the multi-energy system draws electricity from the grid
to meet the purchase agreement on the intraday market (buy). This scenario utilizes the negative flexible
capacity IDbuy

t,ω .
Following, the revenues in the continuous intraday market are determined as:

RID
t,ω = IDsell

t,ω · (optsell
t + ssell

ω ·mct)

+ IDbuy
t,ω · (opt

buy
t − sbuy

ω ·mct), ∀ t ∈ T, ω ∈ Ω.
(22)

We introduce the binary parameters ssell
ω and sbuy

ω in Eq. (22). The binary parameters model the
scenario-dependent remuneration on the continuous intraday market and the physical electricity exchange
with the continuous intraday market (cf. Eq. (25)).

If the sell scenario materializes, the positive flexible capacity IDsell
t,ω is utilized. The multi-energy

system delivers electricity to the intraday market and receives the option value optsell
t . Since additional

operational costs arise endogenously, the binary parameter ssell
ω is set to one. We compensate the addi-

tional operational costs by the marginal electricity costs mct, as the operational costs from participating
in the continuous intraday market are considered in the option value and in the stochastic optimization
problem (cf. section 2.4.2) In the stochastic optimization problem, we thus avoid the operational costs
being taken into account twice.

However, no electricity is purchased on the intraday market (sbuy
ω = 0) in the sell scenario, while the

negative flexible capacity IDbuy
t,ω is remunerated with the option value optbuy

t .
If the buy scenario materializes, the negative flexible capacity IDbuy

t,ω is utilized. Electricity is pur-
chased from the intraday market. As the operational costs reduce endogenously, the binary parameter
sbuy
ω is set to one. We subtract the saved operational costs by the marginal electricity costs mct. In this
scenario, the electricity delivery to the intraday market is not beneficial (ssell

ω = 0). However, the positive
flexible capacity IDsell

t,ω is still remunerated with the option value optsell
t .

Similar to Eq. (20) and (21) for the day-ahead market, we introduce non-anticipativity constraints for
the positive flexible capacity and negative flexible capacity blocked for trading on the continuous intraday
market:

IDsell
t,ω = IDsell

t,ω′ , ∀ t ∈ T, ω, ω′ ∈ Ω : (scp+
ω , scp−

ω ) = (scp+
ω′ , scp−

ω′ ), (23)

IDbuy
t,ω = IDbuy

t,ω′ ∀ t ∈ T, ω, ω′ ∈ Ω : (scp+
ω , scp−

ω ) = (scp+
ω′ , scp−

ω′ ). (24)

2.4.2 Energy system constraints

We exemplary show the model of the multi-energy system that we consider in the case study in section 3.
However, the method applies to other flexible electricity-based systems, such as energy-intense processes



3 CASE STUDY FOR ELECTRICITY MARKET PARTICIPATION OF A MULTI-ENERGY SYSTEM12

or virtual power plants.
The multi-energy system consists of several units u ∈ U , which supply the demands of products

p ∈ P in time step t ∈ T and scenario ω ∈ Ω. We assume a flexible multi-energy system by neglecting
constraints to restrict the operation (e.g., ramping constraints, minimum up-, and down-times, etc.).
Yet, we consider minimum part-load and load-dependent efficiencies of the units. Since the multi-energy
system is based on Baumgärtner et al. (2020), we refer to this publication for the detailed model.

In this subsection, we solely present the electricity balance Eq. (25) for time step t and scenario ω
with:

del,t −
∑
u∈U

Pu,t,ω,el +DAsell
t,ω + ssell

ω · IDsell
t,ω + sep+

ω ·BP+
t =

+DAbuy
t,ω + sbuy

ω · IDbuy
t,ω + sep−

ω ·BP−t , ∀ t ∈ T, ω ∈ Ω. (25)

In each time step t and scenario ω, the electricity demand comprises of the model exogenous demand
del,t and model endogenous demand and supply. The variable Pu,t,ω,el models the endogenous demand of
electrically driven units and the supply of electricity generating units.

Additionally, the electricity balance considers market participation: The electricity supply of the
multi-energy system increases if electricity is sold on the day-ahead market DAsell

t,ω , the intraday market
IDsell

t,ω , and if positive balancing power BP+
t is requested. The electricity supply decreases if electricity is

procured on the day-ahead market DAbuy
t,ω , the intraday market IDbuy

t,ω , and if negative balancing power
BP−t is requested. Therein, the binary parameters sep+

ω , sep−
ω , ssell

ω , sbuy
ω are used to formulate the

electricity balance for the different scenarios ω ∈ Ω.
Overall, the energy system constraints ensure the operational feasibility of the multi-energy system

for time step t ∈ T and scenario ω ∈ Ω while providing flexibility.

3 Case study for electricity market participation of a multi-energy
system

The method proposed in section 2 is applied to a multi-energy system shown in Fig. 4 based on Baumgärt-
ner et al. (2020). The multi-energy system provides flexibility by adjusting the operation of the units (Ta-
ble 2) while supplying an industrial park with hourly varying electricity, heating, and cooling demands.
The multi-energy system participates in the German balancing-power market, day-ahead market, and
continuous intraday market. Therein, we base our analysis on the German electricity market design as
of August 2019.

This section 3 is structured as follows: Section 3.1 presents the case study, while we prepare the
market input parameters for our analysis in section 3.2. Subsequently, we present the results for the
multi-market participation of the multi-energy system in section 3.3 and perform a sensitivity analysis
for the volatility in the continuous intraday market in section 3.4.

We derive daily optimizations with 24 hourly time steps, each, within the SecMOD MILP framework
(Reinert et al., 2022). All optimizations are solved using the solver Gurobi 9.5.0. The optimizations are
successfully solved within a time limit of 3600 s and a gap of 1 % on an AMD EPYC 7F52 (16 cores, 3.5
GHz) with 192 GB RAM.

3.1 Case study input parameters
This section presents the input parameters for the case study. For the balancing-power market, day-ahead
market, and continuous intraday market, we base our study on historical data from one year (August
2019 – July 2020) since no major changes in the balancing-power market design occurred during this
period.

Tab. 1 lists the different data sources for the input parameters. The gas price and the day-ahead
market price are assumed to be deterministic since the prices are comparatively well predictable. We
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Fig. 4. Overview of the multi-energy system: absorption chillers, compression chillers, boilers, electrode
boilers, and combined heat and power units cover hourly varying electricity, heating, and cooling demands.
The multi-energy system participates in the balancing-power market, day-ahead market, and continuous
intraday market.

Tab. 1. Overview of data sources to model the input parameters for the case study.

parameter data source

electricity demand Baumgärtner et al. (2020)
heating demand Baumgärtner et al. (2020)
cooling demand Baumgärtner et al. (2020)

gas price EPEX SPOT (2021)
day-ahead market price Bundesnetzagentur | SMARD.de (2021)
ID1 price EPEX SPOT (2021)

Capacity price balancing-power market Regelleistung.net (2021)
Energy price balancing-power market Regelleistung.net (2021)

Wind forecast ENTSO-E (2021)
Photovoltaic forecast ENTSO-E (2021)
Total load forecast ENTSO-E (2021)
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neglect taxes and levies for the day-ahead market price as well as the gas price. Thus, we consider the
same price for selling and purchasing electricity on the day-ahead market.

For the continuous intraday market, we consider the ID1 price to determine the price volatility. The
ID1 price is the volume-weighted average price of the last hour of a trading session.

For the balancing-power market, we assume a maximum amount of 10MW positive and negative
balancing power that can be offered as integer bids. We take the marginal capacity price from Regelleis-
tung.net (2021). The marginal capacity price is the highest price accepted in the capacity price auction.
We construct the marginal energy price based on the approach presented in Loesch et al. (2018). The
marginal energy price is the highest price the request of balancing power is rewarded with.

3.2 Preparation of market input parameters
We derive the market input parameters based on the historical data and assumptions presented in the
previous section 3.1. Our method requires the following market input parameters: the price drift and the
price volatility of the continuous intraday market, discrete capacity and energy prices with correspond-
ing acceptance and request probabilities for the balancing-power market. These parameters are partly
dependent on each other since the balancing-power market and the continuous intraday market are in-
terdependent (Spodniak et al., 2021). Hence, for a meaningful analysis of multi-market participation,
it is important to derive consistent forecasts with consistent prices among the three considered markets
(Kraft et al., 2022).

Our focus is on the method to integrate trading on the continuous intraday market into the multi-
market bidding problem. Forecasting electricity prices is a research field of its own (Hong et al., 2020).
While various methods exist to forecast day-ahead market prices (Lago et al., 2021), a recent and active
research area is forecasting intraday market prices (Narajewski and Ziel, 2020) and balancing-power
market prices (Jahns and Weber, 2019; Kraft et al., 2020). Thereby, we acknowledge that the development
of more accurate forecasting methods is out of the scope of this publication.

Various studies reveal the effect of wind generation (Ketterer, 2014), solar generation (Andrade et al.,
2017; Hu et al., 2021), and electricity demand (Kiesel and Paraschiv, 2017) on market prices. To prepare
the price input parameters for our analysis, we select the wind generation forecast, solar generation
forecast, and residual load forecast as influencing factors. For those factors, the literature reveals a
systematic influence on intraday prices, and a publicly available day-ahead estimate exists from ENTSO-
E (2021).

The goal is now to obtain the market input parameters depending on the influencing factors to derive
consistent price parameters among the considered markets (Fig. 5). Therefore, we first cluster historical
data of the wind, photovoltaic and residual load forecast (Fig. 5 left) and then assign the market data
to the respective clusters to obtain the market input parameters (Fig. 5 right). Finally, the cluster-
dependent market input parameters are assigned back to the respective time steps of the yearly time
series.

On the day-ahead market and continuous intraday market, we consider hourly contracts. Thus, we
average the quarter-hourly forecast to hours as a first step. Subsequently, we perform a k-means clustering
of the historical data of the wind, photovoltaic and residual load forecast (Fig. 5 left). For our analysis,
we choose |K| = 4, thus, dividing the data into 4 clusters. Using more clusters, more differentiated
conclusions could be drawn from the state of the electricity system regarding market prices. However,
more clusters decrease the data per cluster. Our pre-analysis reveals |K| = 4 as a good compromise
between the number of clusters and data per cluster. Now, the data in each cluster represents a different
state of the electricity system resulting in different market input parameters.

On the balancing-power market, flexible capacity is provided for time slices of four hours. Hence, we
average the quarter-hourly forecast to 4 hours. Subsequently, we also perform a k-means clustering with
|K| = 4.

Following, we assign the market price data to each cluster (Fig. 5 right). For each cluster k ∈ K, we
derive the price drift and price volatility in the continuous intraday market and price correlations for the
balancing-power market as capacity price over the acceptance probability and the energy price over the
request probability.
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Fig. 5. Approach to derive the price input parameters for the balancing-power market, day-ahead mar-
ket, and continuous intraday market. For the balancing-power market, we derive the cluster-dependent
correlation and select discrete capacity prices cp+/−

k and energy prices cp+/−
k . For the continuous intra-

day market, we obtain the cluster-dependent price drift µk and price volatility σk to calculate the option
value.

For the continuous intraday market, we assign the price difference between the ID1 price and the
day-ahead market price to the clusters. Subsequently, we fit a normal distribution to obtain the cluster-
dependent price drift µk and price volatility σk.

For the balancing-power market, we derive the cluster-dependent acceptance probability πBP
k (cp+/−)

as a function of the capacity price. For this purpose, we sort the capacity prices in descending order.
Thus, the acceptance probability is derived as:

πBP
k (cp+/−) =

Nk(cp+/−)

N tot,cp
k

. (26)

Therein, Nk(cp+/−) is the number of four-hour time slices with a marginal capacity price greater than
the capacity price cp+/−, while N tot,cp

k is the total number of four-hour time slices in the considered
cluster k. The energy price is handled in the same way to derive the request probability πBP

k (ep+/−) as
a function of the energy price.

The multi-market optimization requires as inputs discrete capacity and energy prices with the re-
spective acceptance and request probabilities. The discrete prices are derived from the capacity price
and energy price correlations. From each capacity price correlation, we select three different capacity
prices for both positive and negative balancing power. From each energy price correlation, we select four
different energy prices for both positive and negative balancing power. With this selection, we map the
trade-off between capacity and energy prices, and their associated acceptance and request probabilities,
respectively.

More capacity and energy prices increase the number of binary variables in the bidding problem
leading to higher computation times. However, the number of selected capacity and energy prices still
allows reasonable computational times of less than an hour. The number of selected prices thus represents
a trade-off between the computing time and the number of prices for the balancing-power market.

The demands of the considered multi-energy system are clustered with k-medoids. Thereby, we
obtain four typical weeks for our analysis in section 3.3: calendar week 37 in 2019 (CW37-2019), calendar
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Fig. 6. Relative cost of the multi-energy system related to the costs in case (DA) for the four typical
calendar weeks (CWs) in 2019/2020 when participating in the day-ahead market (DA), and in addition the
continuous intraday market (DA,ID), or the balancing-power market (DA,BP), and in all three markets
(DA,ID,BP).

week 46 in 2019 (CW46-2019), calendar week 08 in 2020 (CW08-2020), and calendar week 18 in 2020
(CW18-2020). For the four typical weeks, we compare the cases of participation in the day-ahead market
(DA), day-ahead market and continuous intraday market (DA,ID), day-ahead market and balancing-
power market (DA,BP), and day-ahead market, continuous intraday market and balancing-power market
(DA,ID,BP).

3.3 Results for the participation in sequential electricity markets
The multi-energy system saves the most cost by simultaneous and coordinated participation in all three
markets in case (DA,ID,BP) (Fig. 6). In this case, the proposed method indicates savings of 14 % to
62 % in comparison to case (DA) for the four typical weeks. With expanding participation in the day-
ahead market to the continuous intraday market, costs decrease between 2 % and 15 % in case (DA,ID).
Additional participation in the balancing-power market leads to savings between 12 % and 47 % for case
(DA,BP).

In case (DA,ID,BP), the multi-energy system exploits the possibility to market flexibility on both the
balancing-power market and the continuous intraday market. The flexible capacity is preferably deployed
in the balancing-power market, while the continuous intraday market is used as an opportunity in the
event of an unsuccessful tender in the capacity price auction of the balancing-power market. Therein, the
day-ahead market is used to maximize the preferred direction of flexibility, i.e., electricity is sold on the
day-ahead market to maximize negative flexibility and purchased to maximize positive flexibility. Thus,
the method exploits the possibility of sequential bidding in the multi-stage stochastic optimization.

The continuous intraday market achieves the largest additional revenues in CW08-2020 (cf. case
(DA) with (DA,ID) in Fig. 6). In this week, the price volatility in the continuous intraday market is the
highest due to many hours with high feed-in of wind generation. We generally estimate the volatility
rather conservatively based on the ID1 price for hourly contracts (cf. section 3.2). Quarter-hourly
contracts and utilization of shorter lead times result in higher volatilities with higher option values (Han
et al., 2022). Thus, the multi-energy system may achieve even higher revenues in the continuous intraday
market.

The multi-energy system utilizes the flexible capacity by a complex and interconnected adjustment of
its operation: The electricity production is adjusted based on the market signals, followed by adjusting
the operation of the multi-energy system for the heating and cooling production (Fig. 7). In the event that
positive flexible capacity is utilized, the multi-energy system commonly increases electricity production
by combined heat and power units. Due to their co-generation, electricity production increases heat
production, which is used to cover heating demands or cooling demands via absorption chillers. In
the event that negative flexible capacity is utilized, the multi-energy system either increases internal
electricity use or decreases electricity production, as electricity is drawn from the grid. Subsequently,
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Fig. 7. Relative heating and cooling supply by the multi-energy system in calendar week 37 in 2019
(CW37-2019) for the utilization of the flexible capacity. Positive flexibility is provided for the request of
positive balancing power and asset-backed trading of positive flexibility. Negative flexibility is provided
for the request of negative balancing power and asset-backed trading of negative flexibility. Base operation
refers to a scenario with no request of balancing power.

electrode boilers mostly provide heat, and compression chillers provide cooling.
In conclusion, the results indicate significant savings when participating in all markets since the

flexible capacity is utilized both in the balancing-power market and the continuous intraday market. The
employed bidding strategies and operations are complex, justifying the use of the proposed method.

3.4 Sensitivity analysis of intraday market volatility
The previous analysis reveals that the utilization of flexible capacity is highly beneficial. However, the
balancing-power market tends to be preferred for the typical weeks considered in this study. To better
understand market preferences, we analyze the sensitivities of the model with respect to the volatilities
on the intraday market. Higher volatilities on the intraday market add to the profitability of asset-backed
trading and increase the option value of the intraday market in our model.

We perform the sensitivity analysis for CW37-2019 and consider the case with participation in all
markets (DA,ID,BP). Fig. 8 compares the average amount of flexible capacity offered in the balancing-
power market and continuous intraday market, assuming a successful capacity price auction for positive
and negative balancing power. Thereby, we analyze both the balancing-power market bids of the first
stage and the subsequent strategy on the continuous intraday market at the same time.

The sensitivity analysis highlights the importance of the intraday opportunity within a multi-market
optimization (Fig. 8): Higher volatilities increase both the flexible capacity traded on the intraday market
and the capacity prices in the balancing-power market, reducing the acceptance probabilities. With
increasing volatility the capacity prices are increased first (2σ − 4σ). Subsequently, the flexible capacity
is shifted towards the continuous intraday market (4σ − 6σ).

We vary the volatility between a factor of 0.5 to 6 to reflect the opportunity for flexible capacity to
utilize higher volatilities by trading quarter-hourly contracts and exploiting shorter lead times. With
the base volatility (1σ), flexible capacity is mainly utilized in the balancing-power market (88 %), while
low capacity prices are offered. In this case, the average acceptance probability is 66 % for positive
and 48 % for negative balancing power. With increasing volatility, the offered capacity prices increase,
and the flexible capacity is shifted towards the continuous intraday market. Consequently, the average
acceptance probability reduces to 48 % for positive and 10 % for negative balancing power. Thus, the
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Fig. 8. Flexible capacity offered on the balancing-power market BP+/− and continuous intraday market
ID+/− for CW37-2019 after the successful capacity price auction (cf. Fig. 3) as a function of the intraday
volatility σ. Additionally, the volume-weighted average capacity price cp+/− is shown at which positive
and negative balancing power is offered.

provision of balancing power is less likely. In case 6σ, almost the entire flexible capacity (85 %) is instead
allocated to the continuous intraday market.

In conclusion, the sensitivity analysis of the intraday volatilities shows that both the capacity prices
and the flexible capacity are shifted to favor the continuous intraday market. Thereby, the bidding
strategy reflects the multi-energy system‘s capabilities to exploit the volatility of the continuous intra-
day market. To optimize the trade-off to utilize the flexible capacity, the presented method derives a
coordinated bidding strategy among the markets.

4 Conclusions
A method is presented to integrate trading on the continuous intraday market in a multi-market optimiza-
tion for the day-ahead, balancing-power, and continuous intraday market. To approximate the revenues
from continuous trading, we employ option-price theory. The option price is integrated into a multi-stage
stochastic optimization that models multiple markets, including the energy system’s operations. As a
result, the method is able to determine an optimal coordinated bidding strategy for all markets. The
method is not limited to energy systems as market participants. Although we consider widely adopted
electricity and balancing-power markets, the method can be adapted to different (future) market designs.

We apply our method to a multi-energy system participating in the German market as of August
2019. The largest cost reductions can be achieved when participating in all three considered markets.
The method is able to utilize the flexible capacity of the multi-energy system. A sensitivity analysis
shows that larger volatilities in the intraday market support a shift towards increased participation in
the continuous intraday market: Tenders on the balancing-power market increase capacity prices and
thus reduce acceptance probabilities. The analysis highlights the importance of considering the intraday
opportunity.

In conclusion, our method derives a coordinated and optimized bidding strategy in short-term electric-
ity and balancing-power markets by exploiting the flexibility of the market participant’s energy system
to achieve the largest cost reductions.

The performance of our method depends on sufficient and accurate price forecasts. Since price fore-
casting is not in the scope of this paper, future research could focus on developing price forecasting
methods that are consistent across the markets. In particular, the volatility on the continuous intraday
market greatly influences market preferences. Hence, forecasting methods for the continuous intraday
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market are desirable. Additionally, we consider risk-neutral decision-making. Since energy supply com-
panies often act risk-averse, our approach could thus be extended by considering risk in the optimization
model (Kraft et al., 2022; Germscheid et al., 2022). Finally, our approach could consider storage to
increase the flexibility of an energy system.

We hope that our method and the results motivate market participants to implement joint optimiza-
tion in all markets. Joint market participation increases the flexibility of the power system and ultimately
supports the energy transition.
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Nomenclature
Sets
T Time steps
Ω Scenarios
ΩID Intraday market scenarios
C Capacity and energy price combinations
U Units
P Products

Variables
OPEXexp

t Expected operational cost
OPEXprice comb

t,c Operational cost per price
combination

OPEXscenario
t,c,ω Operational cost per price

combination and scenario
Cgas

t,ω Natural gas cost
RBP

t,c,ω Balancing-power market rev-
enues

RDA
t,ω Day-ahead market revenues

RID
t,ω Intraday market revenues

λBP
t,c Binary decision for

price combination in the
balancing-power market

λDA
t,ω Binary decision to buy/sell

electricity in the day-ahead
market

BUY t,ω,p Amount of bought product
(e.g. natural gas)

DAsell
t,ω Amount of sold electricity in

the day-ahead market
DAbuy

t,ω Amount of purchased elec-
tricity in day-ahead market

IDsell
t,ω Continuous intraday market

trading volumes for positive
flexible capacity

IDbuy
t,ω Continuous intraday market

trading volumes for negative
flexible capacity

BP+
t Amount of positive balancing

power
BP−t Amount of negative balanc-

ing power
Pu,t,ω,p Product supply/demand of

unit

Parameters
πt,c,ω Scenario probability
πBP,cp
t,c,ω Acceptance probability in the

balancing-power market
πID
t,ω Probability of positive or negative flex-

ible capacity being utilized in the in-
traday market

πBP,ep
t,c,ω Request probability in the balancing-

power market
MBP Big M (large number)
MDA Big M (large number)
pgas
t Natural gas price
pDA,sell
t Day-ahead market selling price
pDA,buy
t Day-ahead market purchasing price
cp+

t,c Positive capacity price
cp−t,c Negative capacity price
ep+

t,c Positive energy price
ep−t,c Negative energy price
scp+
ω Binary parameter for acceptance of

positive balancing power
scp−
ω Binary parameter for acceptance of

negative balancing power
sep+
ω Binary parameter for request of posi-

tive balancing power
sep−
ω Binary parameter for request of nega-

tive balancing power
ssell
ω Binary parameter to sell in the contin-

uous intraday market
sbuy
ω Binary parameter to buy in the con-

tinuous intraday market
dp,t Product demand
optsell

t Option price for positive flexible ca-
pacity

optbuy
t Option price for negative flexible ca-

pacity
mct Marginal electricity cost
ut Up-movement
dt Down-movement
µt Price drift
σt Price volatility
Nt Number of trading opportunities
Sini
t Initial price-level
St,k Last prices
Φsell Option value for positive flexible ca-

pacity at the end of the trading session
Φbuy Option value for negative flexible ca-

pacity at the end of the trading session
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A Risk-neutral asset-backed trading strategy
Fig. 9 exemplifies the risk-neutral asset-backed trading strategy in the multiperiod binomial model for
positive flexible capacity. For negative flexible capacity, the multiperiod binomial model works similarly
but in the opposite direction.

The relative electricity output y is the relative flexible capacity traded on the continuous intraday
market. At each trading opportunity, the trader adjusts the sold share of flexible capacity y. The
adjustment is based on the stochastic price process, and the marginal electricity costs mc. Therein, the
trader behaves risk-neutral to realize the estimated option value opt within the trading session. The
option value is realized independent of the price scenario I, II, and III. At the end of a trading session,
the price volatility in the continuous intraday market is monetized to the option value. The positive
flexible capacity is either entirely sold (y = 1) or not (y = 0).

For further information regarding the explicit computation of the risk-neutral asset-backed trading
strategy, we refer to Björk (2009).
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Fig. 9. Exemplary risk-neutral asset-backed trading strategy for positive flexible capacity in the multi-
period binomial model based on (Cox et al., 1979). Each discrete price offers a trading opportunity at
which the trader adjusts the share of sold flexible capacity y to realize the option value opt independent
of scenarios I, II, and III.
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B Installed units of the multi-energy system

Tab. 2. Overview of the installed units of the multi-energy system, their electrical and thermal capacities,
and their output. AC: absorption chillers, CC: compression chillers, B: boilers, EB: electrode boilers, and
CHP: combined heat and power units.

Component Capacity [MWel] Capacity [MWth] Output

AC 1 3.5 Cooling
AC 2 2.5
AC 3 0.5

CC 1 0.8 4.5 Cooling
CC 2 0.4 2.5
CC 3 0.1 0.5

B 1 4.0 Heating
B 2 3.0
B 3 3.0
B 4 1.0

EB 1 1.5 1.5 Heating
EB 2 1.0 1.0

CHP 1 4.4 4 Heating, Electricity
CHP 2 2.2 2
CHP 3 2.2 2
CHP 4 1.1 1
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