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Abstract

We present a specialized scenario generation method that utilizes forecast infor-

mation to generate scenarios for day-ahead scheduling problems. In particular,

we use normalizing flows to generate wind power scenarios by sampling from a

conditional distribution that uses wind speed forecasts to tailor the scenarios to a

specific day. We apply the generated scenarios in a stochastic day-ahead bidding

problem of a wind electricity producer and analyze whether the scenarios yield

profitable decisions. Compared to Gaussian copulas and Wasserstein-generative

adversarial networks, the normalizing flow successfully narrows the range of

scenarios around the daily trends while maintaining a diverse variety of possi-

ble realizations. In the stochastic day-ahead bidding problem, the conditional

scenarios from all methods lead to significantly more stable profitable results

compared to an unconditional selection of historical scenarios. The normalizing

flow consistently obtains the highest profits, even for small sets scenarios.
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1. Introduction

Since the liberalization of the electricity markets, electricity is traded on the

electricity SPOT markets (European Power Exchange, 2021; Mayer & Trück,

2018). The auction-based format of the day-ahead markets requires electricity

producers and large-scale consumers to specify fixed amounts of electricity they5

want to buy or sell one day prior to the delivery (European Power Exchange,

2021). Thus, renewable electricity producers have to account for the uncertain

and non-dispatchable nature of renewable electricity generation from wind and

photovoltaic when submitting their bids (Perez-Arriaga & Batlle, 2012; Mayer

& Trück, 2018; Mitsos et al., 2018).10

To find profitable solutions, operators often leverage optimization techniques

from the process systems engineering (PSE) community (Zhang & Grossmann,

2016; Grossmann, 2021). In particular, scheduling optimization identifies cost-

optimal operational setpoints and leverages variable electricity prices (Schäfer

et al., 2020; Leo et al., 2021). To address the uncertainty stemming from the15

uncertain renewable electricity production and volatile price curves, scheduling

problems are often implemented as stochastic programs that include the un-

certainty in the problem formulation (Conejo et al., 2010; Grossmann, 2021).

Typically, stochastic programs are based on scenarios, e.g., possible realizations

of renewable production trajectories (Conejo et al., 2010; Morales et al., 2013;20

Chen et al., 2018a). The PSE community has been at the forefront of finding

solutions to scheduling problems and stochastic programs for decades (Gross-

mann & Sargent, 1978; Halemane & Grossmann, 1983; Pistikopoulos & Ier-

apetritou, 1995; Sahinidis, 2004). Thus, energy system scheduling problems are

solved successfully by the PSE community (Zhang & Grossmann, 2016; Schäfer25

et al., 2019, 2020). Many PSE examples address electricity procurement for

power-intensive processes and demand-side-management (Zhang & Grossmann,

2016; Zhang et al., 2016; Leo et al., 2021). Examples with energy focus include

Garcia-Gonzalez et al. (2008), who derive a stochastic bidding problem for a

wind producer with pumped hydro storage, and Liu et al. (2015), who propose30
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a model to obtain bidding curves for a micro-grid considering distributed gen-

eration. In their book, Conejo et al. (2010) derive a wind producer bidding

problem considering both price and production uncertainties.

While most works focus on optimization problem formulations and their

solutions, obtaining high-quality scenarios is also critical for operational suc-35

cess. The scenarios for stochastic programming either stem from historical data

or specialized scenario generation methods (Conejo et al., 2010). Established

methods for scenario generation often utilize univariate, i.e., step-by-step pre-

diction, approaches like classical autoregressive models (Sharma et al., 2013) or

autoregressive neural networks (Vagropoulos et al., 2016; Voss et al., 2018). As40

opposed to univariate models, multivariate modeling techniques model a series

of time steps in a single prediction step. This makes them particularly suitable

for day-ahead operation problems as the multivariate predictions best capture

the correlations throughout the day (Ziel & Weron, 2018) and can be set up to

model the distribution of the given time horizon, i.e., the time frame between45

00:00 am and 11:59 pm of the following day. Prominent multivariate scenario

generation models are Gaussian copulas (Pinson et al., 2009; Staid et al., 2017;

Camal et al., 2019) as well as deep generative models like generative adversarial

networks (GANs) (Chen et al., 2018b; Jiang et al., 2018; Wei et al., 2019) and

variational autoencoders (VAEs) (Zhanga et al., 2018).50

Despite their widespread application, the training success of both GANs and

VAEs is sometimes poor and their loss functions are difficult to judge as they

are not directly concerned with the quality of the generated data (Salimans

et al., 2016; Borji, 2019). Furthermore, GANs and VAEs often result in a

mode collapse, i.e., the models converge to a single feasible scenario instead of55

describing the true probability distribution (Arjovsky & Bottou, 2017). Besides

GANs and VAEs, normalizing flows are another type of deep generative model

(Papamakarios et al., 2021). The major advantage of normalizing flows is their

training via direct log-likelihood maximization, which leads to interpretable

loss functions and stable convergence (Rossi, 2018). In prior works, normalizing60

flows performed well for multivariate probabilistic time series modeling (Rasul
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et al., 2021), for scenario generation of residential loads (Zhang & Zhang, 2020;

Ge et al., 2020) and wind and photovoltaic electricity generation (Dumas et al.,

2022b; Cramer et al., 2022b).

Many authors argue that their scenario generation approach samples high-65

quality scenarios (Pinson et al., 2009; Chen et al., 2018b; Zhang & Zhang,

2020). However, a connection of scenario generation to downstream applica-

tions in stochastic programming is missing in most contributions. Exceptions

are Zhanga et al. (2018) and Wei et al. (2019) who both solve operational prob-

lems for wind-solar-hydro hybrid systems. However, their respective VAE and70

GAN are restricted to unconditional scenario generation, i.e., they sample un-

specific scenarios without considering the day-ahead setting and without includ-

ing forecasts or other available information. For a day-ahead bidding problem,

this can potentially lead to suboptimal solutions based on an unrealistic scenario

set containing many unlikely scenarios. Meanwhile, conditional scenario gener-75

ation incorporates forecasts and other available information to specifically tailor

the scenarios to the following day. Examples of conditional scenario generation

are the Gaussian copula approach by Pinson et al. (2009) and the normalizing

flow by Dumas et al. (2022a), where only Dumas et al. (2022a) solve a stochastic

optimization problem using quantiles derived from the conditional normalizing80

flow.

Kaut & Wallace (2003) derive two criteria to evaluate scenario generation

methods for stochastic programming. First, Kaut & Wallace (2003) define sta-

bility via the variance in the optimal objective values, where different sets of

scenarios sampled from the same scenario generation method should yield sim-85

ilar optimal objectives in the stochastic program. Second, Kaut & Wallace

(2003) define the bias of a scenario generation method as the difference between

the optimal objective of the scenario-based stochastic program and the optimal

objective obtained with the true distribution. While stability can be evaluated

by solving multiple instances of the same stochastic program based on different90

scenario sets, the bias of a scenario generation method is impossible to evaluate

for the day-ahead scenario generation problem as the true distribution is un-

4



known and cannot be approximated via historical scenarios. Notably, none of

the previously published works on DGM-based scenario generation test for the

criteria defined by Kaut & Wallace (2003).95

This work extends our previous work on normalizing flow-based scenario

generation (Cramer et al., 2022b) to perform conditional scenario generation

(Zhang & Zhang, 2020; Dumas et al., 2022a) of wind power generation with

wind speed forecasts as conditional inputs, i.e., we use the wind speed forecast

to generate day-ahead wind power generation scenarios that are specifically100

tailored to the given day. We then apply the generated scenarios in a stochastic

day-ahead wind electricity producer bidding problem based on Garcia-Gonzalez

et al. (2008) and Conejo et al. (2010). We compare the results obtained using

the normalizing flow scenarios with unconditional historical scenarios and two

other multivariate conditional scenario generation approaches, namely, the well-105

established Gaussian copula (Pinson et al., 2009) and the recently very popular

Wasserstein-GAN (W-GAN) (Chen et al., 2018b). Our analysis shows that all

conditional scenario generation methods result in significantly more profitable

decisions compared to the historical data and that the profits obtained using

the normalizing flow scenarios are the highest among all considered methods.110

Unlike Wei et al. (2019) or Dumas et al. (2022a), we also perform a statistical

investigation of the stability defined by Kaut & Wallace (2003). In particular,

we consider that most stochastic programs can only be solved for small sets

of scenarios, which makes stability increasingly difficult to achieve. Hence, we

solve the stochastic problem for limited scenario-set-sizes to investigate their115

applicability to stochastic programs that cannot be solved for a high number of

scenarios.

The remainder of this work is organized as follows: Section 2 details the con-

cept of conditional density modeling using normalizing flows. Then, Section 3

details the conditional day-ahead scenario generation method and reviews the120

input-output relation of normalizing flows, Gaussian copulas, and W-GANs.

Section 4 draws a comparison of historical scenarios and scenarios generated

using the three different methods based on the analysis outlined in Pinson &
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Girard (2012) and Cramer et al. (2022a). Section 5 introduces the stochas-

tic bidding problem and analyzes the stability and the obtained profits of the125

different scenario sets. Finally, Section 6 concludes this work.

2. Conditional density estimation using normalizing flows

Normalizing flows are data-driven, multivariate probability distribution mod-

els that use invertible neural networks T : RD → RD to describe a data probabil-

ity density function (PDF) as a change of variables of a D-dimensional Gaussian

distribution (Kobyzev et al., 2020; Papamakarios et al., 2021):

x = T (z)

z = T−1(x)

Here, x ∈ X ⊂ RD are samples of the data and z ∈ N (0D, ID) are the corre-

sponding vectors in the Gaussian distribution with ID being the D-dimensional

identity matrix. New data x is generated by drawing samples z from the known

Gaussian distribution and transforming them via the forward transformation

T (·). Since the transformation between the data and the Gaussian is a change of

variables, the PDF of the data can be expressed explicitly via the inverse trans-

formation T−1(·) using the change of variables formula (Papamakarios et al.,

2021):

pX(x) = ϕ(T−1(x)) |detJT−1(x)| (1)

Here, JT−1 is the Jacobian of the inverse transformation T−1, and pX and ϕ

are the PDFs of the data and the Gaussian, respectively. Intuitively, Equa-

tion (1) describes a projection of the data onto the Gaussian and a scaling of130

the distribution’s volume to account for the constant probability mass. If the

transformation T is a trainable function, the normalizing flow can be trained

via direct log-likelihood maximization using the log of Equation (1).

To describe a conditional PDF pX|Y (x|y) with conditional inputs y ∈ Y ,

i.e., the joint PDF of X and Y where the realization y ∈ Y is known, the

transformation T and its inverse T−1 must accept the conditional information
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Figure 1: Example RealNVP architecture containing two conditional affine coupling layers

(Dinh et al., 2017; Winkler et al., 2019), with conditioner models sI , tI , sII , and tII , Gaussian

sample vector z, data sample vector x, intermediate sample vector zI , conditional input vector

y. The indices 1 : D/2 and D/2+1 : D refer to the two halves of the data vectors, respectively.

The dashed lines indicate the flow of the conditional input data y.

vector y in addition to the transformed variables z and x, respectively (Winkler

et al., 2019):

x = T (z,y)

z = T−1(x,y)

If T remains differentiable for any fixed value of the conditional inputs y, the

likelihood can still be described using the change of variables formula:

pX|Y (x|y) = ϕ(T−1(x,y)) |detJT−1(x,y)| (2)

In this work, we employ the real non-volume preserving transformation (Re-

alNVP) (Dinh et al., 2017), which is based on a composition of affine coupling

layers. In each coupling layer, one half of the data vector undergoes an affine

transformation, which is parameterized via functions of the remaining half of

the data vector:

x1:D/2 =z1:D/2

xD/2+1:D =zD/2+1:D ⊙ exp(s(z1:D/2,y)) + t(z1:D/2,y)
(3)

Here, ⊙ denotes element-wise multiplication, the indices 1 : D/2 and D/2 + 1 :

D refer to the two halves of the data vectors, respectively, and s and t are
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the so-called conditioner models. Notably, the partial transformation of the

data vectors keeps the inputs of s and t identical for both the forward and the

inverse transformation. Thus, the conditioner models can be implemented as

any standard feed forward neural network (Dinh et al., 2017). Furthermore, the

clever design of the affine coupling layer results in lower triangular Jacobians.

Hence, the Jacobian determinant required for the likelihood computation is

simply given by the product over the diagonal elements. The log-form Jacobian

determinant used for training then is:

log detJRealNVP(z) =
D∑

k=D/2+1

s(z1:D/2,y)

Large and highly expressive normalizing flows can be built using compositions of

Equation (3) in an alternating manner. Figure 1 shows an illustrative sketch of135

an exemplary RealNVP architecture with two conditional affine coupling layers.

In Cramer et al. (2022b), we showed that normalizing flows sample unchar-

acteristically noisy scenarios when applied to sample for the distributions of

renewable electricity time series, due to their inherent lower-dimensional man-

ifold structure. To address the issue, we proposed dimensionality reduction140

based on the principal component analysis (PCA). In this work, we use PCA

to reduce the dimensionality of the data x and the Gaussian samples z. The

conditional input vectors y are not affected by the PCA. For more information

on the effects of manifolds we refer to Brehmer & Cranmer (2020), Behrmann

et al. (2021), and Cramer et al. (2022b).145

3. Day-ahead scenario generation

This work addresses scenario generation with a particular focus on applica-

tions in day-ahead scheduling problems. Thus, all scenarios describe a possible

realizations covering the time between 00:00 am and 11:59 pm of the following

day. In particular, we generate day-ahead wind power generation scenarios and

use day-ahead forecasts of wind speeds as conditional inputs to narrow down the

range of possible trajectories and make the scenarios specific to the following
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day. For reference, we include a comparison to historical data, which represents

unconditional scenarios, i.e., randomly drawn sampled from the full distribution

pX(x) that does not consider the wind speed forecasts. Meanwhile, the scenario

generation methods aim to fit models of the full conditional PDF pX|Y (x|y) that

are valid for every possible wind power realization x ∈ X and every possible day-

ahead wind speed forecast y ∈ Y . In the application, the wind speed predictions

are known one day prior to the scheduling horizon and the scenario generation

models are evaluated for fixed conditional inputs y. Normalizing flows, Gaus-

sian copulas, and W-GANs all employ multivariate modeling approaches, i.e.,

the models generate full daily trajectories in a vector form (Pinson et al., 2009;

Ziel & Weron, 2018; Chen et al., 2018b). All models use multivariate Gaussian

samples z and the wind speed forecast vectors, i.e., the conditional informa-

tion y, as inputs to generate wind power generation scenario vectors x. For a

given fixed wind speed forecast y = const., sampling and transforming multiple

Gaussian samples z results in a set of wind power generation scenarios, i.e., the

Gaussian acts as a source of randomness to generate sets of scenarios instead of

point forecasts:

xi = T (zi,y = const.) ∀i ∈ 1, . . . ,#Scenarios

Here, T (·) can be any of the scenario generation models. For more details on

the evaluation of the different models, we refer to our supplementary material

and the papers by Pinson et al. (2009) and Chen et al. (2018b).

All models generate capacity factor scenarios, i.e., the actual production150

scaled to installed capacity, of the 50 Hertz transmission grid in the years 2016

to 2020 (Open power systems data, 2019). The year 2019 is set aside as a test

set to avoid complications in the stochastic programming case study due to

the unusual prices resulting from the COVID-19 pandemic (Micha l Narajewski,

2020; Badesa et al., 2021). To avoid including test data in the scenario sets, the155

unconditional historical scenarios are drawn from the training set. The 15 min

recording interval renders 96-dimensional scenario vectors that fit the 24 h time

horizon of a day-ahead bidding problem. The day-ahead wind speed forecasts
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have hourly resolution and are obtained from the reanalysis data set “Land Sur-

face Forcings V5.12.4” of MERRA-2 (Global Modeling and Assimilation Office160

(GMAO), 2015) which is based on previously recorded historical data. We use

the predictions at the coordinates 53.0◦ N, 13.0◦ E, in the center of the 50 Hertz

region. Note that due to potential wind speed forecast errors and agglomeration

effects in the power generation, there is no direct known functional relationship

between the wind speed forecast and the realization of regionally distributed165

power generation.

Due to numerically singular Jacobians and non-invertible transformations

(Behrmann et al., 2021; Cramer et al., 2022b), full-space normalizing flows fail

to accurately describe the distribution of daily wind time series trajectories re-

siding on lower-dimensional manifolds (Cramer et al., 2022b). Therefore, we170

use PCA (Pearson, 1901) to reduce the data dimensionality following our re-

cent contribution (Cramer et al., 2022b). We select the number of principal

components based on the explained variance ratio, i.e., the amount of infor-

mation maintained by the PCA (Pearson, 1901). For an explained variance

ratio of 99.95%, we obtain 18 principal components to represent the original175

96-dimensional scenario vectors. The adversarial training algorithm for the W-

GAN (Arjovsky et al., 2017) did not converge consistently for the considered

learning problem. Thus, the results presented below are drawn from the best

performing model out of 20 different trained models w.r.t. the metrics outlined

in Section 4. For more detailed information on the implementation, we refer to180

the supplementary material.

4. Conditional wind power scenario generation

We start by analyzing the scenarios without a specific application in mind.

To this end, we present some examples, analyze the described distributions, and

investigate whether the models can identify the correct daily trends.185

Figure 2 shows example scenarios for two randomly selected days of the test

year 2019. The left, center-left, center-right, and right columns show histori-
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Realization Wind Speed Scenarios

Figure 2: 20 wind capacity factor scenarios (“Scenarios”) each from the historical scenario set

(left), normalizing flow (center-left), Gaussian copula (center-right), and W-GAN (right) in

relation to the realized wind capacity factor (“Realization”). The plots for the the scenario

generation methods include the conditional input (“Wind Speed”). Realization and scenarios

on the left y-axis and scaled wind speed predictions on right y-axis. Top: March 29th, 2019,

bottom: September 15th, 2019. Data from 50 Hertz region (Open power systems data, 2019).

cal scenarios and scenarios sampled from the conditional normalizing flow, the

Gaussian copula, and the W-GAN, respectively. The historical scenarios are

randomly selected from the training set and are, therefore, unspecific to the190

respective days. Thus, they fail to identify the daily trends and show large dis-

crepancies for both days. For both example days in Figure 2 the normalizing

flow identifies and follows the general trend of the realized wind capacity factor.

For the presented examples, the realization lies within the span of the scenarios.

Similarly, the Gaussian copula also identifies the trend of the realization. How-195

ever, there are some scenarios with significantly higher or lower capacity factors

in the case of both days, i.e., the Gaussian copula appears prone to sample

outliers that do not follow the trend. The W-GAN-generated scenarios fail to

identify the trend and, instead, appear tightly agglomerated and only represent

the daily average of the realization, which can be observed for the morning hours200

of the first day and, to a lesser extend, on the afternoon hours of the second

day. The failed identification of the trend is likely due to a mode collapse of the

W-GAN, which is a frequently observed phenomenon with GANs (Arjovsky &
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Figure 3: Distribution and fluctuational behavior of generated wind capacity factor scenarios

from historical training data (“Historical”), normalizing flow (“Normalizing Flow”), Gaussian

copula (“Copula”), and W-GAN (“W-GAN”) in comparison to historical test data (“Realiza-

tion”) (Open power systems data, 2019). Left: marginal probability density function (PDF)

estimated using kernel density estimation (Parzen, 1962), center: quantile-quantile plots (Q-

Q-plots) (Chambers, 2018), right: power spectral density (PSD) estimated using Welch’s

method (Welch, 1967).

Bottou, 2017). Mode collapse happens when the adversarial training algorithm

converges to a small range of realistic scenarios but fails to identify the true205

distribution. Note that due to the multivariate modeling approach of generat-

ing full daily trajectories, this type of deviation may occur at any time step

throughout the day.

To gain insight into the quality of the full scenario sets, we analyze whether

the scenario generation methods are able to reproduce the probability distribu-210

tions and the frequency behavior of the actual time series by looking at the full

year of 2019 in comparison to the eventual realization. To this end, we look

into the marginal PDF (Parzen, 1962), the quantile distribution in Q-Q plots

(Chambers, 2018), and the power spectral density (PSD) (Welch, 1967). For

a detailed introduction to the interpretation of PDF and PSD, we refer to our215

previous work (Cramer et al., 2022a). Figure 3 shows the marginal PDFs (left),

the Q-Q plots (center), and the PSD (right) of the historical- and the generated

scenarios from the normalizing flow, the Gaussian copula, and the W-GAN in

comparison to the realizations in 2019.

In Figure 3, the historical scenarios and the normalizing flow scenarios de-220

scribe the test set PDF well and show good matches of the quantile distribution
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in the Q-Q-plot. Meanwhile, the Gaussian copula produces a broader PDF with

a much lower peak than the realization, whereas the W-GAN’s PDF shows a

shift towards higher values. The Q-Q-plot also shows the shift of the W-GAN

generated distribution, as there is an offset between the W-GANs and the other225

quantile lines. The poor distribution match by the Gaussian copula is likely

due to the linear quantile regression that is unable to represent the nonlinear

relation between the predicted wind speed and the capacity factor. Further-

more, the copula relies on linear interpolation of quantiles which can inflate the

PDF in the tails and, thus, lead to outlier sampling (Pinson et al., 2009). The230

W-GAN can theoretically model any distribution (Goodfellow et al., 2014). In

our analysis, however, the adversarial training algorithm was very difficult to

handle with the time series data and often resulted in poor fits. The presented

results are the best of 20 training runs in terms of matching the criteria in

Figure 3. Meanwhile, both the Gaussian copula and the normalizing flow with235

PCA converge consistently and typically yield the presented results after the

first training attempt.

The Q-Q-plot reveals that all methods yield distributions with longer tails

than the realizations, i.e., they produce scenarios with higher capacity factors

than the maximum realized capacity factor. The reason is that for days with the240

highest capacity factor of the year, even higher capacity factors are still feasible

as the realizations never reach the full installed capacity. Also, the log tail of

the PDF makes the offset appear inflated as it only occurs for the 99-th and

100-th percentile. Note that both Copula and W-GAN are restricted to sample

from the [0,1] interval via the boundaries of the inverse CDF (Pinson et al.,245

2009) and the tanh output activation function, respectively. Meanwhile, the

normalizing flow has no such restriction and yields some scenarios surpassing 1,

which leads to the normalizing flow having the strongest deviation in the Q-Q-

plot. Although these scenarios are theoretically infeasible, they have a very low

probability and can efficiently be removed in postprocessing.250

The PSD in Figure 3 shows a good match of the frequency behavior by the

historical scenarios, the normalizing flow, and the Gaussian copula. The W-
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Figure 4: Energy score (ES) (Gneiting et al., 2008; Pinson & Girard, 2012) over all days

in 2019 (left) and boxplots (right). Historical- (“Historical”) and generated scenarios from

normalizing flow (“Normalizing Flow”), Gaussian copula (“Copula”), and Wasserstein-GAN

(“W-GAN”). Boxes indicate quartiles and diamonds indicate outliers (Waskom, 2021). Note

different y-scale for historical ES.

GAN is close to the overall power-law, i.e., the slope of the PDF curve, of the

data, but fails to match the exact frequency behavior.

In addition to the analysis of the full scenario sets in Figure 3, we also

compute the energy score (ES) for each day in 2019. ES is a quantitative measure

for the assessment of multivariate scenario generation models that compares the

conditional scenario set with the respective realization (Gneiting et al., 2008;

Pinson & Girard, 2012):

ES =
1

NS

NS∑
s=1

||x− x̂s||2 −
1

2NS
2

NS∑
s=1

NS∑
s′=1

||x̂s − x̂s′ ||2

Here, x is the realization vector, x̂s are the scenario vectors, NS is the number255

of scenarios, and || · ||2 is the 2-norm. The energy score is a negatively oriented

score, i.e., lower values indicate better results. The two parts of the energy score

reward closeness to the realization and diversity of the scenario set, respectively.

In Figure 4, we display the energy score for each day in 2019 as well as

boxplots that showcase the overall energy score distributions for the historical260

data and the three different models. The normalizing flow energy score is lower

on average compared to the Gaussian copula and the W-GAN, indicating a bet-

ter fitting of the realizations and more diverse scenarios. The Gaussian copula
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shows the highest energy score which is likely a result of the outliers observed

in Figure 2. Furthermore, the normalizing flow leads to a narrow distribution265

of energy scores with few outliers, indicating consistently good results. Mean-

while, the historical scenarios consistently result in significantly higher energy

scores compared to the conditional day-ahead scenario generation methods. By

design, the unconditional historical scenarios do not identify the daily trends

and are not generated specifically for the respective days. Thus, the deviations270

from the realizations penalized by the energy score are significant for most days.

In conclusion, we find that the conditional normalizing flow presented in

Section 2 generates scenarios that match the true distribution of realizations

closely, while also providing a diverse set of possible realizations. Furthermore,

the normalizing flow outperforms the Gaussian copula and the W-GAN with275

respect to all important metrics. The historical scenarios describe the overall

distribution well, but are not specific to the individual days and, hence, return

poor results in day-ahead problem-specific metrics like the energy score.

5. Day-ahead bidding strategy optimization

We apply the scenarios generated in the previous section in a wind producer280

bidding problem based on Garcia-Gonzalez et al. (2008) and Conejo et al. (2010).

We first state the problem formulation and then analyze the stability of the

scenario generation methods for different numbers of scenarios based on the

criterion defined by Kaut & Wallace (2003). Finally, we investigate the obtained

profits based on the different scenario sets.285

5.1. Wind producer problem formulation

We consider the deterministic equivalent formulation (Birge & Louveaux,

2011) of the stochastic wind producer problem from Garcia-Gonzalez et al.

(2008) and Conejo et al. (2010) shown in Figure 5 that aims to find an optimal

bidding schedule for the operator of a wind farm participating in the European

Power Exchange (EPEX SPOT) market (European Power Exchange, 2021).
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Figure 5: Structural setup of the wind producer problem from Garcia-Gonzalez et al. (2008)

and Conejo et al. (2010) with generated electricity Ps,t,q , (dis-) charging rates P in
s,t,q and

P out
s,t,q , placed bids PD

t , and day-ahead electricity prices λD
t . The indices s, t, and q indicate

scenarios, hourly time intervals, and quaterhourly time intervals, respectively.

First, the operator places bids at the day-ahead auction market one day prior

to delivery and, thereby, commits to deliver a certain amount of electricity

PD
t during the given trading time interval t. The revenue made is given by

λD
t PD

t δh, where λD
t is the day-ahead price and δh = 1h is the trading interval.

As wind electricity generation is stochastic and non-dispatchable (Conejo et al.,

2010), the placed bids may not always be met by the actual production. To

balance the difference between the placed bids and the actual production we

allow for a small electricity storage that can store the electricity of up to 15 min

of maximum production. For any remaining production imbalance, we enforce

a penalty on the absolute value of the imbalance (Garcia-Gonzalez et al., 2008).

The full objective then reads (Garcia-Gonzalez et al., 2008):

max
PD

t

NT∑
t=1

[
λD
t PD

t δh − ω|λD
t |

NS∑
s=1

πs|∆s,t|

]
(4)

Here, ∆t,s is the imbalance at time point t and scenario s. The penalty term

is based on the absolute values of the day-ahead price |λD
t | to compensate for

possible negative electricity prices (Garcia-Gonzalez et al., 2008).
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The penalty term in Equation (4) contains the absolute value operator | · |,290

leading to a nonlinear problem. However, any positive deviation can be avoided

via curtailment of the plant and the imbalance will only take negative values in

practice, which makes the absolute value operator obsolete. Thus, the absolute

imbalance is substituted by its negative parts to obtain a linear problem (Conejo

et al., 2010). The complete linear formulation of the wind producer market par-295

ticipation problem including the electricity storage is shown in Problem (WP).

max
PD

t ,P in
s,t,q,P

out
s,t,q

NT∑
t=1

[
λD
t PD

t δh − ω|λD
t |

NS∑
s=1

πs∆
−
s,t

]

s.t. SOCs,t,q = SOCs,t,q−1 + ηδqP
in
s,t,q −

1

η
δqP

out
s,t,q, ∀s ∈ S,∀t ∈ T ,∀q ∈ Q

SOCs,t=24,q=4 = SOC0, ∀s ∈ S

∆−
s,t ≤ δhP

D
t − δq

∑
q∈Q

Ps,t,q −
(
P out
s,t,q − P in

s,t,q

)
, ∀s ∈ S,∀t ∈ T

0 ≤ PD
t ≤ PD,max, ∀t ∈ T

0 ≤ ∆−
s,t, ∀s ∈ S,∀t ∈ T

0 ≤ P in
s,t,q ≤ Pmax, ∀s ∈ S,∀t ∈ T ,∀q ∈ Q

0 ≤ P out
s,t,q ≤ Pmax, ∀s ∈ S,∀t ∈ T ,∀q ∈ Q

0 ≤ SOCs,t,q ≤ SOCmax, ∀s ∈ S,∀t ∈ T ,∀q ∈ Q

S = {1, . . . , NS}

T = {1, . . . , NT }

Q = {1, . . . , 4}
(WP)

Tables 1, 2, and 3 list the indices, parameters, and variables of Problem (WP),

respectively. Problem (WP) is the deterministic equivalent of a two-stage stochas-

tic program (Birge & Louveaux, 2011), where the delivery commitments are the

first stage decisions and, the second stage decisions are the actual delivery and300

the storage operation.

The problem is implemented in pyomo (Hart et al., 2017), version 6.2, and
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Table 1: Indices in Problem (WP).

Indices Description

q Quater hour interval

s Scenarios

t Hour interval

solved using gurobi (Gurobi Optimization, LLC, 2021), version 9.5.

Note that in Problem (WP), simultaneous charging and discharging of the

storage is feasible, however, does not occur at the optimum due to the losses305

associated with using the storage. The problem operates on both the trading

time scale with hourly intervals and the production time scales with 15 min

intervals.

5.2. Stability

Kaut & Wallace (2003) define stability and bias as criteria for the quality of a310

scenario generation method for stochastic programming. A scenario generation

method is considered stable when different instances of the stochastic program

based on different generated scenario sets result in similar optimal objective

values. A small bias is achieved if the optimal objective value of the scenario-

based formulation is close to the optimal objective value obtained by solving the315

stochastic program with the true distribution of the uncertain parameter. For

the case of day-ahead scenario generation methods, the biases of the scenario

generation methods are impossible to assess, as the true distribution for the wind

power generation of the individual days is unknown and cannot be represented

via historical data.320

Problem WP is linear and can be solved efficiently. However, larger mixed-

integer problems, as well as non-convex stochastic programs, often cannot be

solved for a large number of scenarios due to the large computational effort

(Birge & Louveaux, 2011) and, small scenario sets must suffice for the stochastic

program. Consequently, high stability becomes increasingly important for small325
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Table 2: Parameters in Problem (WP).

Parameter Description Value/Unit

δh Trading time interval 1 h

δq Production time interval 15 min

η (Dis-) Charging efficiency 0.91

λD
t Day-Ahead Price [EUR/MWh]

ω Penalty factor 1.5

πs Probability of scenario s 1/NS

NT Number of time steps 24

NS Number of scenarios [-]

PD,max Maximum production capac-

ity

100 MW

Pmax Maximum (dis-) charging rate 12.5 MW

Ps,t,q Actual production [MW]

SOCmax Maximum battery capacity 25 MWh

SOC0 Initial battery state of charge 12.5 MWh

Table 3: Variables in Problem (WP).

Variable Description Unit

PD
t Bid at day-ahead market [MW]

P in
s,t,q Charging rate [MW]

P out
s,t,q Discharging rate [MW]

SOCs,t,q Battery state of charge [MWh]

∆−
s,t Negative production imbalance [MW]
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Figure 6: Boxplot of the optimal objective function distributions for 50 instances of Prob-

lem (WP) with five scenarios from the historical data set (“Historical”), normalizing flow

(“Normalizing Flow”), Gaussian copula (“Copula”), and W-GAN (“W-GAN”), respectively.

Boxes indicate quartiles and diamonds indicate outliers (Waskom, 2021).

numbers of scenarios. In the following, we solve 50 instances of Problem (WP)

for each day of 2019 and each scenario generation method using small scenario

sets of only 3, 5, 10, 20, and 50 scenarios, each.

Figure 6 shows box plots of the optimal objectives using small sets of five

scenarios from the historical data set, normalizing flow, Gaussian copula, and330

W-GAN for ten randomly selected days from 2019. As an indicator of stability,

we look at the spread of optimal objectives, i.e., the height of the box plots, that

result from the 50 different scenario sets. For the ten randomly selected days

shown in Figure 6, the normalizing flow scenarios result in the lowest spreads

of optimal objectives. The optimal objectives of the Gaussian copula scenarios335

show significantly larger spreads than both the normalizing flow and the W-

GAN scenarios. Meanwhile, the randomly selected historical scenario sets lead

to by far the largest spreads.

Table 4 shows statistics for the different numbers of scenarios derived over all
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Table 4: Average standard deviation (StD) and average max-min spread (Spread) of the

optimal objectives of 50 different instances of Problem (WP) with 3, 5, 10, 20, and 50 scenarios

each generated from normalizing flow, Gaussian copula, and W-GAN over all days in 2019.

Best results are marked in bold font.

# Scenarios Historical Normalizing Flow Copula W-GAN

StD

[EUR]

3 6735 1726 3534 2441

5 5025 1317 2585 1883

10 3291 930 1763 1333

20 2253 659 1244 932

50 1404 417 787 593

Spread

[EUR]

3 30527 7874 17467 10719

5 22899 5979 12285 8367

10 14963 4214 8142 5966

20 10138 3017 5613 4184

50 6371 1891 3531 2675
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days in 2019, namely, the average standard deviation and the max-min spread,340

i.e., the difference between the maximum and minimum objective value. The

results in Table 4 confirm the observation from Figure 6 that normalizing flows

yield scenarios with the most stable optimal objectives indicated by the lowest

standard deviation and the lowest spread. Furthermore, both standard devia-

tions and spreads decrease for increasing numbers of scenarios for all scenario345

generation methods. Notably, the normalizing flow achieves greater stability

with fewer scenarios compared to the other methods. For instance, the stan-

dard deviation achieved with just three normalizing flow scenarios is lower than

the standard deviations of ten Gaussian copula scenarios and lower than five

W-GAN scenarios.350

It appears that the outlier scenarios of the Gaussian copula observed in

Figure 2 are weighted more heavily in the case of only a few scenarios and,

thus, lead to larger differences in the optimal objectives. As the normalizing flow

shows no extreme outlier scenarios and identifies the overall trends well, there is

very little variance in the optimal objective values even for small scenario sets.355

The historical data results in the largest spreads as the data is sampled from

the entire spectrum of possible realizations instead of the narrower distributions

described by the day-ahead scenario generation models.

5.3. Obtained profits

Solving Problem (WP) maximizes the expected profits and yields first-stage360

decisions that describe a fixed schedule of electricity delivery commitments for

the day-ahead market PD
t . We can compute the actual profits by fixing the first

stage decisions obtained from the stochastic program and re-optimizing the sec-

ond stage with the realized electricity production. To gain statistically relevant

results, we compute the actual profits obtained in Problem (WP) for each day365

in 2019, each time using 100 historical or generated scenarios. For comparison,

we also compute the profits obtained via the perfect foresight problem, i.e., an

ideal single scenario instance of Problem (WP) based on the actual realization.

Figure 7 shows box plots of the distribution of profits obtained by using
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Figure 7: Boxplot of profits obtained in 2019 in Problem (WP). Each problem uses 100

scenarios generated from the historical data (“Historical”), the normalizing flow (“Normalizing

Flow”), the Gaussian copula (“Copula”), and the W-GAN (“W-GAN”) or the realization for

the perfect foresight (“Realization”), respectively. Boxes indicate quartiles and diamonds

indicate outliers (Waskom, 2021).
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Table 5: Average, average percentage, and maximum perfect information profit gap (PIPG)

of actual profits obtained over all days in 2019 with 100 scenarios each generated from nor-

malizing flow, Gaussian copula, and W-GAN, respectively. Best results are marked in bold

font.

Historical Normalizing Flow Copula W-GAN

Average PIPG [EUR] -8381 -1832 -2658 -3485

Average PIPG [%] -81.5% -10.9% -16.6% -23.0%

Max. PIPG [EUR] -70234 -8311 -11017 -17432

scenarios from the historical data and the three different generation methods370

in comparison to the profits obtained from the perfect foresight problem (“Re-

alization”). The profits obtained by using the normalizing flow scenarios are

the highest, while the Gaussian copula scenarios yield profits between the nor-

malizing flow and the W-GAN. The profits obtained by using the unconditional

historical scenarios are significantly lower than those of all models generating375

day-ahead scenarios. Furthermore, the historical scenarios are unconditional

and fail to identify the days with high production that appear as high-profit

outliers in the case of the other scenario generation methods and the perfect

foresight case.

To analyze whether the scenario generation methods take advantage of the380

profit potentials, we define the perfect information profit gap (PIPG) as the

difference between the actual profits obtained from the stochastic program and

the perfect information profit. Table 5 lists the average and maximum PIPGs in

2019. The average PIPGs show that the normalizing flow scenarios yield profits

that are on average 6% and 12% points closer to the perfect foresight profits385

compared to the Gaussian copula and the W-GAN, respectively. Meanwhile,

the historical scenario profits are over 80% lower on average than the perfect

foresight profit. The maximum PIPG, i.e., the worst performing days, also show

that the normalizing flow scenarios give significantly more profitable results

compared to the other generation methods.390

Table 6 lists the average expected profits (“Average objective [EUR]”) and
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Table 6: Average expected profits (“Average objective [EUR]”) of the stochastic program and

average actual profits (“Average profit [EUR]”) of 50 different instances of Problem (WP)

with 3, 5, 10, 20, and 50 scenarios each from the historical data and generated from the

normalizing flow, the Gaussian copula, and the W-GAN over all days in 2019.

# Scenarios Historical Normalizing Flow Copula W-GAN

Average

objec-

tive

[EUR]

3 12268 17336 16435 16011

Average

profit

[EUR]

5753 16156 13527 14694

Average

objec-

tive

[EUR]

5 11890 17195 16196 15880

Average

profit

[EUR]

7544 16438 15197 14813

Average

objec-

tive

[EUR]

10 10821 16974 15833 15646

Average

profit

[EUR]

8390 16628 15738 14988

Average

objec-

tive

[EUR]

20 10305 16893 15675 15530

Average

profit

[EUR]

8864 16725 15880 15103

Average

objec-

tive

[EUR]

50 10004 16829 15597 15464

Average

profit

[EUR]

9132 16792 15984 15170
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the average actual profits (“Average profit [EUR]”) obtained using scenario sets

of size 3, 5, 10, 20, and 50. For all scenario generation methods, smaller sce-

nario sets tend to overestimate the expected profits. For increasing numbers of

scenarios, the expected profits and the actual profits converge. Notably, the nor-395

malizing flow scenarios result in the smallest difference between the expected and

the actual profits, particularly for smaller scenario sets of three or five scenarios.

Furthermore, the average actual profits obtained using the normalizing flow are

consistently higher than the actual profits obtained from any of the other meth-

ods. In fact, using just three normalizing flow scenarios results in higher profits400

than any investigated number of scenarios from any other considered scenario

generation method.

The higher profits obtained using the normalizing flow scenarios reflect the

findings of Section 4, i.e., the normalizing flow identifies the correct trends

and also reflects a diverse distribution. Meanwhile, the Gaussian copula shows405

outliers and does not match the distribution, and the W-GAN even struggles to

identify the daily trends. The unconditional historical scenarios do not describe

the daily trends and, thus, result in significantly lower profits in the day-ahead

scheduling optimization. In conclusion, the results shown in Figure 7, Table 5,

and Table 6 highlight that the normalizing flow generates the best scenarios and410

yields the most profitable bids.

6. Conclusion

The present work considers the scenario generation problem for a day-ahead

bidding problem of a wind farm operator to participate in the EPEX spot mar-

kets. We utilize a data-driven multivariate scenario generation scheme based on415

conditional normalizing flows to model the distribution of wind capacity factor

trajectories with wind speed predictions as conditional inputs. The generated

scenarios are specifically tailored to stochastic optimization problems concerning

the time frame between 00:00 am and 11:59 pm.

We analyze the normalizing flow scenarios in comparison to randomly se-420
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lected historical data and scenarios generated from other more established meth-

ods, namely, Gaussian copulas and Wasserstein generative adversarial networks

(W-GANs), and compare them to the actually realized power generation in

2019. The historical scenarios reflect the overall distribution of realizations well

but fail to identify daily trends and show large variations independent of the425

investigated day. Among the conditional scenario generation methods, the nor-

malizing flow scenarios best reflect the realized power generation trends and

their distributions while also displaying a diverse set of possible realizations.

Meanwhile, the Gaussian copula results in uncharacteristic outliers, and the

W-GAN struggles to identify the main trends of the realizations. Furthermore,430

both Gaussian copula and W-GAN result in skewed distributions.

To assess their value for stochastic programming, the scenarios are applied

in a stochastic programming case study that aims to set bids for electricity sales

on the day-ahead market. First, we investigate the stability defined by Kaut &

Wallace (2003). Here, the normalizing flow yields scenarios that result in the435

most stable optimal objective values, even for small scenario sets. In particular,

the normalizing flow scenarios result in the smallest standard deviation and the

smallest spread in the optimal objective values. The analysis of the actual profits

obtained on all days of 2019 shows a significant advantage of using day-ahead

scenarios that are specifically tailored to the investigated day. Using randomly440

selected historical scenarios results in an average perfect information profit gap

(PIPG) of over 80%, while the conditional scenario generation methods return

PIPGs between 10 to 23%. The bids placed using the normalizing flow scenarios

obtain the highest profits and have the lowest PIPG, i.e., the profits are closest

to the perfect foresight profits. Notably, even small scenario sets of only three445

normalizing flow scenarios result in higher actual profits than any investigated

number of scenarios from the other considered scenario generation methods.

In conclusion, utilizing conditional, day-specific scenarios in day-ahead schedul-

ing problems leads to significantly more profitable decisions compared to relying

on unconditional historical data. Furthermore, the conditional normalizing flow450

model yields high-quality scenarios that result in highly profitable solutions for
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stochastic programs and stable results, even for small scenario sets. Therefore,

we argue that normalizing flow scenarios have a high potential for scheduling

problems that cannot be solved with a large scenario set.
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