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Abstract: Heat integration can be considered in flowsheet optimization by including the minimum

utility demand from pinch analysis in the objective and constraints. This often results in better

process performance than conducting these steps separately. However, it comes with increased

computational cost, especially for global optimization. This cost depends both on the problem for-

mulation and on the solver. In this work, we compare several existing and new smooth, nonsmooth,

and mixed-integer formulations. Furthermore, we test different choices of optimization variables

and constraints reaching from full- to reduced-space formulations. In the reduced-space formu-

lations, heat integration can be included with few, one, or even zero additional variables beyond

the pure flowsheet optimization problem. For the considered case studies, this can significantly re-

duce the solution time of various global solvers, in particular for our open-source solver MAiNGO.

Depending on the case study and solver, either nonsmooth or mixed-integer formulations are the

fastest to solve.

1 Introduction

Optimal heat integration has been an active field of research since decades. In the late 1970s,

Linnhoff and Flower [21] introduced pinch analysis and the feasibility table to determine the hot

and cold utility demand based on information about the process streams to be heated and cooled

for a given minimum temperature approach allowed in each heat exchanger. The temperature-

enthalpy-diagram (TH-diagram) represents an equivalent graphical method [16]. Papoulias and

Grossmann [27] extended these tools by a mathematical program based on an analogy to the

transshipment model. These three tools are all applicable a posteriori, i.e., for a flowsheet with

fixed stream conditions.
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Later, Duran and Grossmann [12] introduced a formulation that embeds pinch analysis in

the flowsheet optimization, thus allowing to consider the remaining utility demands after heat

integration in the optimization problem. This approach is generally referred to as “simultaneous

flowsheet optimization and heat integration” [12, 15, 26]. More recently, optimization of flowsheets

with a Heat Exchanger Network (HEN) superstructure embedded has been considered [10, 17, 22].

This approach allows to rigorously take into account the trade-off between capital cost for heat

exchanger area and utility cost. However, it is computationally expensive and to date only possible

for simple process models and relatively restrictive superstructures. Therefore, this work focuses

on the approach suggested by Duran and Grossmann [12].

Solving the simultaneous flowsheet optimization and heat integration problem is challenging, as

additional variables and nonsmooth nonconvex constraints are introduced as compared to flowsheet

optimization without simultaneous heat integration. Originally, this method had been applied in

conjunction with gradient-based local solvers along with a smooth approximation of the nonsmooth

functions involved [12]. Some recent works still rely on local solvers with such smoothing approx-

imations [30, 35]. Vikse et al. [30] used a multistart approach to help raise the confidence that

the global optimum is found. Other works used genetic algorithms to solve comparable problems

[14, 36]. Both approaches, however, cannot guarantee (approximate) global optimality in finite

time. Moreover, according to Zhuang et al. [36], the utilized genetic algorithm still required a

significant solution time and a more efficient strategy should be developed.

Simultaneous flowsheet optimization and heat integration problems have been solved using de-

terministic global optimization, as well. Niziolek et al. [26] solved a large optimization problem

including heat integration with 10,000’s of constraints and variables. The constraints included

linear as well as some multilinear (i.e., bilinear, trilinear and quadrilinear) equations. However,

the computation was stopped after 100 CPU hours with a large optimality gap remaining. Yang

and Grossmann [34] optimized a methanol process using the commercial branch and bound (B&B)

solver BARON. Additionally, a more complex bioethanol process was optimized, but various pro-

cess conditions were fixed a priori to reduce the complexity of the problem. Both works successfully

apply global optimization to the simultaneous flowsheet optimization and heat integration prob-

lem. Nonetheless, a more efficient formulation or optimization strategy would have allowed to

include more degrees of freedom (DOFs), more complex process models, or to achieve a smaller

optimality gap. Cassanello et al. [8] tested two formulations of pinch analysis that are applicable

in simultaneous flowsheet optimization and heat integration in an effort to improve computational

performance of the global optimization. However, three out of their four examples did not have a

process model embedded (i.e., no simultaneous flowsheet optimization).

In this work, we aim to accelerate the convergence of the simultaneous deterministic global

flowsheet optimization and heat integration problem by testing and comparing new and existing
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problem formulations. In particular, we exploit the fact that our open-source optimizer MAiNGO

[1] can natively handle the two-argument max function [29] that appears in the original pinch for-

mulation [12], thus eliminating the need for smoothing [11, 12] or mixed-integer [15] reformulations.

Furthermore, we consider the use of reduced-space optimization formulations [7, 24], which we have

shown to be computationally advantageous for global flowsheet optimization [2, 3]. In these formu-

lations, optimization variables and corresponding equality constraints are eliminated by reformu-

lating the constraints such that the eliminated variables can be computed as factorable functions

of the remaining variables. In flowsheet optimization, they are a hybrid between equation-oriented

and sequential-modular methods [4]. In this work, we show that in reduced-space formulations,

heat integration can be included with only few, one, or even no additional variables beyond those

of the pure flowsheet optimization problem, depending on the formulation of the pinch analysis.

We investigate the effect of these formulations on the solution times of various deterministic global

solvers.

The remainder of this article is structured as follows: In Section 2, we briefly introduce the

original problem formulations from [12] as well as alternatives focusing on the nonsmooth terms

included in the original formulation. In Section 3, four case studies are introduced on which the

different formulations are tested. The results of these studies in terms of computational perfor-

mance achieved with MAiNGO are presented in Section 4.1 and compared to different commercial

and open source solvers in Section 4.2.

2 Formulation of the Pinch Problem

In this section, we first summarize the original formulation of the simultaneous flowsheet opti-

mization and heat integration problem. Subsequently, we present continuous and mixed-integer

reformulations of that formulation which will later be assessed in terms of their effect on compu-

tational performance.

2.1 Original Formulation

Duran and Grossmann [12] proposed a mathematical formulation that allows to embed the pinch

calculations in a flowsheet optimization problem. This formulation assumes constant heat ca-

pacities over the temperature range of each heat stream as well as a single minimum temperature

approach ∆Tmin that must hold for all streams. Previous works have shown that nonlinear enthalpy

models may be embedded directly into pinch analysis [37], relaxing the assumption of constant heat

capacities. However, this is outside the scope of this work.

We now summarize the formulation. For the full original formulation please refer to the sup-

plementary information (SI) or to Duran and Grossmann [12]. For the pinch calculation, a set

3



of hot streams H to be cooled and cold streams C to be heated are defined. Moreover, the

set of pinch candidates P containing all possible (hot-end) pinch temperatures T p is defined as

P “ tT in
i @ i P H, T in

j ` ∆Tmin @ j P Cu. Therein, T in
s , s P H Y C denote the temperatures

at which the process streams enter the HEN. The heat transferred to the HEN from hot streams

above (i.e., at a higher temperature than) each pinch candidate is then calculated as

Qp
in,A “

ÿ

iPH

FCipmaxpT in
i ´ T p, 0q ´ maxpT out

i ´ T p, 0qq @ p P P, (1)

and the heat transferred from the HEN to cold streams above each pinch candidate as

Qp
out,A “

ÿ

jPC

FCjpmaxpT out
j ´ pT p ´ ∆Tminq, 0q

´ maxpT in
j ´ pT p ´ ∆Tminq, 0qq @ p P P. (2)

Therein, the variables FCs, s P H YC describe heat capacity flowrates. The inequality constraints

Qp
out,A ´ Qp

in,A ´ QH ď 0 @ p P P, (3)

where QH is the net demand for hot utility, guarantee that the minimum temperature approach is

not violated at any of the pinch candidates. The given formulation is also called explicit because

QH is explicitly included as an optimization variable in the problem [19]. For typical objectives,

QH will be driven down towards the minimum possible hot utility that is limited by one of the

inequality constraints given in Eq. (3). Duran and Grossmann [12] also proposed an alternative

formulation that was later referred to as the implicit formulation [19], where Eq. (3) is replaced

with

QH “ max
pPP

pQp
out,A ´ Qp

in,Aq. (4)

This eliminates one variable at the cost of introducing the multi-argument max function. Many

solvers do not natively support this function, but the n-argument max function can be reformulated

as a composition of n ´ 1 two-argument max functions.

Both the explicit and implicit formulation use the same formulation to obtain the heat flow

rate that individual hot and cold streams contribute above a given pinch candidate, which is based

on the max function, Eqs. (1) and (2). These equations introduce a large number of nonsmooth

nonconvex terms into the overall problem. The nonsmooth nature of these terms is problematic

when using gradient-based solvers; moreover, many global optimization solvers or even methods

inherently require twice-continuously differentiable functions. This is not the case in MAiNGO [1]

4



as well as the MC++ library [9] it uses to compute relaxations. On the other hand, the introduced

nonconvexities potentially lead to weak relaxations in the context of global optimization. The core

of these terms is discussed in more detail in the remainder of this work and will be referred to as

the “pinch expression”, defined in its original form as

∆T – maxpTH ´ T p, 0q ´ maxpTC ´ T p, 0q. (5)

TH and TC refer to the respective hot and cold end stream temperatures, i.e., for hot streams,

TH “ T in
i and TC “ T out

i , and vice versa for cold streams. ∆T denotes the temperature difference

that is multiplied with the heat capacity flowrate in Eqs. (1) and (2) to calculate the heat transferred

above the pinch candidate T p.

To use nonsmooth functions like the pinch expression in global optimization, they have to be

treated accordingly in the lower and upper bounding problems of the B&B algorithm. For lower

bounding, relaxations of the nonsmooth functions are required. In MAiNGO, this is the case since

relaxations of, e.g., the two-argument max function [29] are available through the MC++ library

[9]. For upper bounding, the challenge is that no derivatives exist, while they are required for the

commonly used gradient-based local solvers. In MAiNGO, we heuristically use one of the one-sided

derivatives of these piecewise differentiable functions, e.g., for the function maxpx, yq, the derivative

at points where x “ y is always taken to be 1 with respect to x and 0 with respect to y. Our

numerical experiments showed no practical issues. Watson et al. [31] described a rigorous method

relying on generalized derivatives to handle nonsmooth functions in the simultaneous flowsheet

optimization and heat integration problem. However, implementing such a strategy is not trivial

and we consider it beyond the scope of our work. Rigorous handling of the derivatives promises

more reliable performance of local solvers. This is important when relying exclusively on these

solvers, as Watson et al. [31] do. However, in the context of a global optimization strategy, such

as ours, occasional failure of the local solvers used for upper bounding may be more acceptable,

and in particular it cannot result in convergence to suboptimal solutions.

2.2 Nonsmooth Reformulations

The previously defined pinch expression can be formulated in other ways that also use nonsmooth

functions such as the max function, but potentially enable tighter relaxations that accelerate

global optimization. For instance, as an alternative to Eq. (5), the max function can be applied in

a slightly different way, while yielding the same function value:

∆T “ maxpTH , T pq ´ maxpTC , T
pq. (6)
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We compared the McCormick relaxations of the alternative pinch expression in Eq. (6) to the

one of the original pinch expression given in Eq. (5) using the MC++ library [9], and found the

relaxations of the expression in Eq. (6) to be tighter than those of the one in Eq. (5) in some

intervals and weaker in others.

Having two equivalent formulations with evidently different relaxations motivates to implement

an intrinsic function that uses the respective tighter relaxation of these two at any given point,

which we call the pinch function. Furthermore, based on the monotonicity properties of this pinch

function, we can compute exact interval bounds for it. In contrast, when using one of the previously

mentioned expressions from Eqs. (5) and (6), these bounds are calculated using natural interval

extensions, which can be substantially weaker. The pinch function as a mathematical function can

be defined as

pinch: R3 Ñ R, pinch pTH , TC , T
pq Ñ maxpTH ´ T p, 0q ´ maxpTC ´ T p, 0q. (7)

Note that in the following, when we refer to the pinch function, we refer to this intrinsic function.

In contrast, we use the term “pinch expression” as a generic term for any expression calculating

∆T , including but not limited to the expressions previously given in Eqs. (5), (6), and the pinch

function.

Another alternative formulation can be envisioned based on the mid function, which selects the

median of its three arguments. We implemented the mid function of two variables and a constant

as an intrinsic function in MC++ [9]. The necessary convex and concave envelopes of the mid

function was derived in analogy to those of the max function [29]. Using the mid function, we

replace Eq. (5) by

∆T “ midpTH ´ T p, TH ´ TC , 0q. (8)

Note that the resulting term is equal to the ones using the max function only if TH ě TC . This

should always be the case at the solution of the problem by the definition of hot and cold streams.

However, during the optimization this is not necessarily always the case, and therefore we cannot

combine the obtained relaxations with the previous ones, as we did in the pinch function. When

defining the problem as either a DNLP or an MINLP, GAMS accepts the max function when using

LINDOGLOBAL or SCIP. However, BARON and ANTIGONE do not accept the max function

directly, whereas they can handle the absolute value function. For those solvers, we reformulate

the max function exploiting that

maxpx, 0q “
1

2
px ` |x|q. (9)
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Using the above reformulation and calculating the relaxations of the resulting expression using the

MC++ library results in weaker relaxation than the envelope of the max function [29].

2.3 Smooth Formulations

Typical gradient-based solvers cannot handle nonsmooth functions. A smoothed version of the

max function has been used in previous works in order to avoid this issue [11, 12, 34]. One possible

smoothed max function is given by

Ąmaxpx, 0q “
1

2
px `

a

x2 ` ϵq (10)

with a smoothing parameter ϵ ą 0 [11, 34]. It is not immediately clear if this also improves the

solution time of the global optimization. While it likely improves the performance of the local

gradient-based solvers used for upper bounding, it may weaken the relaxations. Also note that in

contrast to the previously presented reformulations, using this smoothed max function does not

result in an exact reformulation of the original problem but in an approximation.

An additional reformulation that avoids nonsmooth functions altogether was proposed by Cas-

sanello et al. [8]. The formulation requires 3|P | ˆ p|C| ` |H|q additional continuous variables

compared to the original formulation presented by Duran and Grossmann [12]. The formulation

is referred to as NLP (nonlinear programming) formulation in [8] for its lack of binary variables

as opposed to the proposed alternative in that work. For the full formulation, please refer to the

formulation given in Section 2.1 of [8]. The second formulation in [8], named “Multi-M”, requires

preprocessing based on bounds of the temperature variables. This is not possible with our formula-

tion in which some of the temperatures are calculated variables that we do not have explicit bounds

on. It is in theory possible to derive bounds by bound propagation, but this is not straightforward

to implement since it requires a dedicated preprocessing step to construct the problem formulation.

Therefore, we do not consider this strategy in this work.

2.4 Mixed-Integer Reformulations

Previous works have employed an exact reformulation of the original formulation of the pinch prob-

lem as presented by Duran and Grossmann [12] based on a linear (big-M) formulation [15, 33]. For

the full formulation, please refer to [15], [33] or our SI. The formulation adds |P | ˆ |S| continuous

variables with the set of all streams S “ Hnoniso Y Cnoniso Y Hiso Y Ciso. The sets labeled with

the indices “noniso” and “iso”contain the nonisothermal and isothermal streams, respectively. We

define isothermal streams as those streams from or to which heat is transferred at a single tempera-

ture (e.g., evaporating or condensing single-component streams), rather than a temperature range.

If each stream contributes one new pinch candidate (worst case), the formulation adds |S|2 con-
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tinuous variables. Additionally, the formulation adds |P | ˆ p3|Cnoniso| ` 3|Hnoniso| ` |Hiso| ` |Ciso|q

binary variables.

As an alternative, we derive another mixed-integer formulation by reformulating the max func-

tion using a bilinear mixed-integer formulation. In contrast to the approach of [15], [33], this

introduces additional nonlinearities, but only |P | ˆ p2|Cnoniso| ` 2|Hnoniso| ` |Hiso| ` |Ciso|q binary

and no continuous variables. In the context of superstructure optimization, we recently showed

that such alternative formulations that add nonconvex terms but result in smaller problems can

be beneficial if they lead to small problems and the problem is already nonconvex because of the

model equations [6]. The constraints for calculating Qp
in,A in this formulation are

Qp
in,A “

ÿ

iPHnoniso

FCippzi,p,1T
in
i ` p1 ´ zi,p,1qT out

i q

´ pzi,p,2T
out
i ` p1 ´ zi,p,2qT pqq

`
ÿ

iPHiso

QH,iso,iziso,i,p @ p P P

0 ě T in
i ´ T p ´ Mzi,p,1 @ p P P, i P Hnoniso

0 ě T p ´ T in
i ´ Mp1 ´ zi,p,1q @ p P P, i P Hnoniso

0 ě T out
i ´ T p ´ Mzi,p,2 @ p P P, i P Hnoniso

0 ě T p ´ T out
i ´ Mp1 ´ zi,p,2q @ p P P, i P Hnoniso

0 ě Ti ´ pT p ` ϵq ` ´Mzi,p @ p P P, i P Hiso

0 ě pT p ` ϵq ´ Ti ´ Mp1 ´ zi,pq @ p P P, i P Hiso (11)

The term calculating Qp
out,A is derived analogously. The variables zi,p,1 and zi,p,2, i P Hnoniso

are binary variables corresponding to the non-isothermal streams. They indicate which of the

arguments in the original formulation Eqs. (1) and (2) corresponds to the function value of the

respective max function: zi,p,1 “ 1 means that T in
i ě T p and zi,p,2 “ 1 means that T out

i ě T p. M

is a parameter that is chosen larger than the largest possible temperature difference in the process.

For isothermal hot streams, the binary variables zi,p, i P Hiso are introduced that indicate if

the isothermal stream lies above (zi,p “ 1) or below (zi,p “ 0) the pinch temperature. A small

parameter ϵ ą 0 is necessary to ensure pinch candidates lie on the correct side of each stream, e.g.,

at the vapor side of a condensing hot stream [15, 33].

2.5 Isothermal Streams

In previous works, isothermal streams were routinely treated by introducing a dummy tempera-

ture change and then treating them as non-isothermal streams [11, 12]. Duran and Grossmann
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[12] introduced a fixed dummy temperature change of 1 K, while Dowling and Biegler [11] intro-

duced the parameter α to represent the dummy temperature change. For this work, we adopt the

parameter α from Dowling and Biegler [11] in a way that assumes hot isothermal streams to exit

at a lower temperature and the cold ones to exit at a higher temperature as suggested by Duran

and Grossmann [12]. This is more conservative than adding α to the hot end of both hot and cold

isothermal streams as proposed by Dowling and Biegler [11]. With dummy temperature change,

all of the reformulations listed in Sections 2.2 and 2.3 can also be used for isothermal streams.

As an alternative, the mixed-integer formulations in Section 2.3 contain constraints specifically de-

signed for isothermal streams. Using these constraints results in zero dummy temperature change.

Finally, we consider an additional formulation based on the step function steppxq, which returns

1 if x ě 0, and otherwise returns zero. This formulation also corresponds to zero dummy temper-

ature change. The step function and its relaxations presented by Wechsung and Barton [32] are

available in MC++. The corresponding constraints calculating Qp
in,A and Qp

out,A read as follows:

Qp
in,A “

ÿ

iPHnoniso

FCipmaxpT in
i ´ T p, 0q

´ maxpT out
i ´ T p, 0qq

`
ÿ

iPHiso

QH,iso,i p1 ´ steppT p ´ Tiqq @ p P P

Qp
out,A “

ÿ

jPCnoniso

FCjpmaxpT out
j ´ pT p ´ ∆Tminq, 0q

´ maxpT in
j ´ pT p ´ ∆Tminq, 0qq

`
ÿ

jPCiso

QC,iso,j steppTj ´ pT p ´ ∆Tminqq @ p P P (12)

The motivation for using alternative formulations to those using dummy temperature change lies

primarily in accelerating the convergence of the optimization rather than improving accuracy, which

is at most a welcome side effect. A dummy temperature change of 1K only rarely changes the

degree to which two streams can exchange heat and represents a reasonably accurate assumption

in the context of pinch analysis.

2.6 Choice of Optimization Variables

In addition to the formulation used for the pinch expression, we consider different choices of opti-

mization variables. Typically, when implementing a problem, e.g., in GAMS, all model variables

are implemented as optimization variables and all model equations are implemented as equality

constraints. We call this type of formulation full-space (FS) in the following.

As an alternative, we consider factorable reduced space formulations (RS) [2, 7, 24]. In these
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formulations, variables for which explicit relationships exist as equality constraints in the FS formu-

lation are eliminated by replacing each occurrence of the variables with these explicit relationships

[24]. RS formulations lead to a small number of optimization variables and constraints but at the

same time usually result in highly nonlinear and complex objective and constraints. The variables

in RS only include the DOFs of the problem and those variables for which no explicit relationship

exists. The concept of RS formulations and its resemblance to sequential-modular formulations of

flowsheet optimization is comprehensively discussed in Chapter 3 of [2]. Previous work showed that

using RS can lead to a significant speed-up, e.g., in the context of flowsheet [3, 4] and superstructure

optimization [6].

Both approaches can be applied to the simultaneous heat integration and flowsheet optimization

problem. In an FS formulation, all equations occurring in the chosen formulation from Sections

2.1–2.5 become equality constraints (along with all equations of the flowsheet model), and all

variables therein become optimization variables. The simultaneous problem is thus significantly

larger than the pure flowsheet optimization problem. In an RS formulation, the equations of the

chosen formulation from Sections 2.1–2.5 are instead used to eliminate variables where possible.

For example, Eq. (1) can be used to compute the Qp
in,A as a factorable function of the temperatures

and the heat capacity flowrates. Therefore, the Qp
in,A do not become optimization variables, and

Eq. (1) does not become an equality constraint, since this part of the model can simply be evaluated

given the other variables. Therefore, only a few additional variables and (in-)equality constraints

are required for the pinch analysis. For example, the explicit formulation in Section 2.1 requires

only QH as additional variable and Eq. (3) as additional inequalities. In contrast, the implicit

formulation in the same section does not require any additional variables beyond those of the

flowsheeting problem, since now QH is computed from Eq. (4).

Naturally, there is a spectrum reaching from the minimum possible number of variables, RS, to

FS. One additional option will be considered for the simultaneous flowsheet optimization and heat

integration problem, called reduced-space + temperatures (RS+T). This formulation corresponds

to RS, but with all temperatures occurring in pinch analysis added as optimization variables along

with the corresponding equality constraints. Adding optimization variables and the corresponding

constraints leads to higher dimensionality but may help provide tighter relaxations [4].

3 Case Studies

Four case studies from the literature are chosen for comparing the computational performance of

different formulations of the simultaneous optimization and heat integration problem. Although

for some of the cases the optimal heat exchanger matching is rather obvious and known a priori,

we use pinch analysis for the sake of analyzing the computational performance.
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Table 1: Overview of key indicators of problem size for case studies. *OV: number of optimization
variables **Here, we define DOFs as the number of variables minus the number of equality con-
straints. ***temperatures that occur in pinch analysis and are not declared optimization variables
or constants, but rather computed as a function of other variables (see Section 2.6) :RS and RS+T
are identical for this case.

Name OV* DOFs** Hot streams Cold streams Hot/cold Non-OV
(isothermal) (isothermal) utilities temp.***

Regenerative
7 6 2 (1) 3 1 / 1 3

Rankine RS
Regenerative

10 6 2 (1) 3 (1) 1 / 1 0
Rankine RS+T
Two-Pressure

16 9 2 (1) 6 (2) 1 / 1 0
Rankine RS+T
Methanol

68 6 6 (2) 3 (1) 1 / 3 0
production:

LNG RS 7 6 4 (0) 7 (0) 1 / 1 3

LNG RS+T 10 6 4 (0) 7 (0) 1 / 1 0

An overview of the size of the four processes used for case studies is given in Table 1. The

number of optimization variables and DOFs include the additional DOFs introduced with the pinch

analysis in its original formulation as given by Duran and Grossmann [12]. The FS formulations

result in larger numbers of optimization variables, 91 for the Regenerative Rankine and 49 for

the LNG case study. These are solved in the solver comparison case study for the Regenerative

Rankine and the LNG case, but not in the formulation comparison which focuses on MAiNGO

(see Section 4.1). The composite curves at the optimal solution of the four processes can be found

in the SI. The C++ and the GAMS models of these processes used in this work are available via

our website1.

3.1 Regenerative Rankine Cycle

The first case study is the Regenerative Rankine Cycle presented in [3]. The optimization aims at

maximizing the net power output of a Rankine cycle driven by a fixed stream of hot gas turbine

exhaust. To transform the original model to the one including pinch analysis, all heat transfers

between flue gas and Rankine cycle are decoupled. The original model with matched heat streams

and without pinch analysis can be used as a reference case to assess the increase in computational

time caused by including pinch analysis. Although the process is not expected to require hot utility,

we still introduce it, as setting it to zero requires physical insight and is not always possible. In

1The C++ and GAMS implementations of the case studies are available at http://permalink.avt.rwth-aachen.
de/?id=198813.
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the objective function, it is priced as electric heating, so in the optimal solution, the process does

not use any hot utility but runs on the provided heat from the flue gas. Additionally, a small

penalty for cold utility use is added to the objective function to avoid cooling down the flue gas

stream with cold utility, which would otherwise be indifferent to the objective. The composite

curves and operation points are identical for the simultaneous optimization and the original model

without pinch analysis, which indicates that in the original model, the heat streams were matched

optimally.

3.2 Two-Pressure Rankine Cycle

As a second case study, the Two-Pressure Rankine Cycle from the same publication is used [3].

The additional turbine stage introduces three additional cold streams and three DOFs compared to

the Regenerative Rankine Cycle. The composite curves of the process are identical for the original

model without pinch analysis and the simultaneous optimization and heat integration model, once

again indicating that the heat exchanger matching in the original model was chosen optimally.

3.3 Methanol Production Process

As the third case study used herein, we consider a methanol production process. The process

is based on [4], but with an added distillation column for separating methanol and water and a

purge combustor, which are both adopted from [5]. Moreover, we assume that the reactor heat

is available at the reactor effluent temperature (i.e., the heat stream is isothermal), and that this

stream may be integrated like any other stream.

For the methanol process, the exergetic efficiency of the process is chosen as objective function.

Medium and low pressure export steam are added to the process models in the form of additional

cold utilities, which adds two isothermal cold streams, each associated with one DOF. In contrast

to the two previously introduced models, the optimal heat exchanger matching is not known a

priori. Therefore, there is no heat integrated process to be used as a reference case. Instead, as a

reference case, the process is optimized without heat integration and all heat streams contribute

to the exergetic efficiency with their respective exergy, analogous to the approach taken in [5]. By

coincidence, all temperatures occurring in pinch analysis are in the set of the minimum required

optimization variables in the process model, i.e., they are optimization variables in RS. Accordingly,

RS and RS+T are identical.

3.4 Liquefied Natural Gas (LNG) Process

As the last case study, we consider the natural gas liquefaction (LNG) process presented by Wech-

sung et al. [33]. The process relies on liquid nitrogen and liquid CO2 and a combination of
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compressors and turbines to liquefy an incoming natural gas stream. For this purpose, it uses

multistream heat exchangers that are modeled using pinch analysis, since no clear heat exchanger

matching exists. Therefore, no reference case can be provided that does not use pinch analysis.

The optimization aims at minimizing the liquid nitrogen consumption. We consider the last sce-

nario of Wechsung et al. [33] in which the process operates as a standalone unit, i.e., no external

electricity supply and no hot or cold utility are available.

4 Results

In this section, we first discuss the solution times achieved with different formulations using

MAiNGO. Next, we compare the performance with other solvers. Throughout the studies con-

ducted, we consider RS, RS+T and FS.

4.1 Formulation Comparison

The problems for this study were implemented using the C++ interface of MAiNGO. All problems

were solved using the solver SLSQP [18] instead of the default IPOPT in the multistart during

preprocessing; this avoided long preprocessing times which would distort the results. Otherwise,

we used default settings and a time limit of 1,000 s. All results presented in this section were

obtained using an Intel Core i7-10510U CPU at 2.3 GHz.

The results achieved with some formulations have been excluded from this section, as, with

MAiNGO, they frequently did not converge within the time limit. These include FS formulations

as well as full mixed-integer reformulations, i.e., those eliminating all max functions by using

integer variables. Both of these strategies introduce a large number of additional variables and

constraints, i.e., lead to high dimensionality, which was found to lead to poor performance when

using MAiNGO. Please refer to Section 4.2 and the SI for some of the according results.

Figure 1 shows the effect of the problem formulation and the choice of optimization variables

on the CPU time required to solve the Regenerative Rankine Cycle study. The results for the

LNG case study are qualitatively similar and can be found in the SI. All isothermal streams were

modeled with a dummy temperature change of α “ 1 K. In the figure legend, “max” refers to

using the original pinch expression Eq. (5), whereas “alt max” refers to using the alternative pinch

expression based on the max function Eq. (6). “max implicit” refers to using the max function

and the implicit formulation and “smooth” uses the original formulation with the max function

replaced by Eq. (10) with the given ϵ. Finally, “max-mid” refers to using the pinch expression

based on the max function Eqs. (5) for non-isothermal streams and the one based on the mid

function Eq. (8) for isothermal streams with dummy temperature change.
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Figure 1: Effect of problem formulation and choice of optimization variables on CPU time for the
Regenerative Rankine Cycle case study with MAiNGO. Including the temperatures as optimization
variables along with suitable constraints (RS+T) is advantageous compared to RS.

The formulations using RS+T always performed better than the respective equivalent RS for-

mulations. This is likely due to the fact that the temperatures used in the pinch expression are

reoccurring nonlinear factors; it is well-known that this leads to potentially weak McCormick re-

laxations, see, e.g., Tsoukalas and Mitsos [29]. While MAiNGO has a feature for heuristically

adding some variables to reduced-space formulations to achieve tighter relaxations [25], these were

not yet sufficient to achieve the same benefit obtained by manually adding the temperatures as

optimization variables.

The standard formulation using the real (nonsmooth) max function, the pinch function, and the

combination of max and mid function (for non-isothermal and isothermal streams, respectively)

with RS+T performed approximately equally well and outperformed the remaining formulations.

The better relaxations of the pinch function and the max-mid combination came with a practical

benefit only in RS. The alternative formulation using the max function in Eq. (6) did not appear to

have any advantage over the standard one. In fact, for unknown reasons it did not converge within

1,000 s with the Regenerative Rankine Cycle case, even with added optimization variables. The

implicit formulation as well as the one based on the smoothed max function with the considered
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Figure 2: Effect of problem formulation on CPU time in RS+T. Computational performance is
measured in terms of CPU times divided by the best CPU time achieved on the respective case
study. For all case studies, the original formulation using the max function performs very well in
RS+T.

smoothing parameters performed worse than the standard formulation using the max function. In

conjunction with a look at the solver logs, this indicates that our heuristic used for upper bounding

in the presence of nonsmooth functions works well with the explicit formulation. However, the

nested max functions used for the implicit formulation appears to complicate both upper and

lower bounding.

The previously presented study was repeated with the remaining case studies considering only

RS+T. Again, the standard formulation using the (real, nonsmooth) max function Eq. (5) performs

approximately equally well or better than the alternatives (see Fig. 2).

Finally, we can consider dedicated formulations for handling isothermal streams. For this

purpose, different strategies were tested for handling isothermal streams, while using the pinch

function for non-isothermal streams. The formulations for isothermal streams cannot be tested on

the LNG example, as it does not contain any isothermal streams.

Figure 3 shows the CPU time required for optimizing the Rankine Cycles and the methanol

process using different strategies for isothermal streams. In each formulation, the pinch function
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Figure 3: Computational performance of different formulations for isothermal streams relative to
best performing case on the respective study. Using dummy temperature change performs well
independent of the numerical value of α in RS+T.

is used for non-isothermal streams and only the strategy for isothermal streams is varied. The

pinch and mid function can be used in conjunction with a dummy temperature change α, whereas

binary variables and the step function as used in Eqs. (12) do not assume any dummy temperature

change. The binary formulation used is the one presented in Eqs. (11) for isothermal streams

(non-isothermal streams are still modeled using the pinch function). Recall that RS and RS+T

are identical for the methanol case (see Section 3.3). RS is not considered for the Two-Pressure

Rankine Cycle, as it takes significantly longer than 1,000 s to solve regardless of the formulation

used for isothermal streams.

Overall, the methods using dummy temperature change and the pinch function or the original

formulation based on the max function (not depicted in Fig. 3) converged quickly and did not

produce any deviation from the result without this assumption. The parameter α had a significant

effect on the solution time with RS, but almost none with RS+T. Moreover, in RS, using the mid

function for isothermal streams led to significantly faster convergence than using the pinch function

when considering the same α. Using binary variables or the step function generally increased the

solution time. In contrast to the other formulations, when using the formulation containing binary

variables, the best solution is not found immediately during preprocessing, but during the B&B

procedure after the binaries are fixed in every node. Therefore, we believe that finding a good

upper bound is what slows down the convergence of the mixed-integer formulations. This effect

may be less severe with solvers using more elaborate strategies to find feasible solutions in the

presence of binary variables, as will be shown in the following section.
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4.2 Solver Comparison

In this section, we compare the solution times achieved with MAiNGO with those achieved using

other solvers. For this purpose, we use the parser tool of MAiNGO to translate the problems into

GAMS format. We then use the solvers ANTIGONE [23], BARON [28], LINDOGLOBAL [20] and

SCIP [13] in GAMS to solve the problems to a relative optimality gap of 1%. For ANTIGONE and

BARON, all max functions are reformulated by the parser using the absolute value functions, as

in Eq. (9), because the max function is not implemented in these solvers. All solutions discussed

in this section were obtained on an Intel Xeon CPU E5-2640 v3 at 2.60 GHz. The results are

presented for the Regenerative Rankine case only, but additional results for the LNG case are

available in the SI.

In terms of the choice of optimization variables, we consider RS, RS+T, and FS for all solvers

and problem formulations. Note that when directly implementing a problem with GAMS, many of

the reduced-space formulations would be cumbersome to write, since they include few optimization

variables and constraints but very long and complex equations in the constraints. All tested

formulations are summarized in Table 2.

Figure 4 shows the wall clock time required for the Regenerative Rankine Cycle. The wall clock

time is used since not all solvers return their CPU time. For each solver, the best results achieved

with any formulation from Table 2 are given for RS, RS+T and FS, respectively. For reference,

the case without pinch analysis (best performing among all choices of optimization variables) is

also given. ANTIGONE apparently encountered an error while reading some of the problems and

terminated immediately with a nonzero exit code and without returning a solution.

RS+T tended to converge faster than RS in cases comprising pinch analysis with BARON

being the exception. MAiNGO with RS+T resulted in the shortest solution time for both the

reference case and the one with pinch analysis. In RS+T, MAiNGO solved the simultaneous

flowsheet optimization and heat integration problem about one order of magnitude faster than the

Table 2: Overview of all formulations tested for the solver comparison.

isothermal streams non-isothermal streams

max (Eq. (5)) max (Eq. (5))
max-smooth (ϵ “ 10´4) (Eq. (10)) max-smooth (ϵ “ 10´4) (Eq. (10))
max-smooth (ϵ “ 10´6) (Eq. (10)) max-smooth (ϵ “ 10´6) (Eq. (10))
binary (Eqs. (11)) binary (Eqs. (11))
binary big-M (see [15]) binary big-M [15])
max (Eq. (5)) binary (Eqs. (11))
max (Eq. (5)) binary big-M (see [15])

NLP formulation from [8]
reference case (no pinch analysis)
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Figure 4: Solver comparison for the Regenerative Rankine Cycle. The respective best formulation
in RS, RS+T and FS with pinch analysis is given for each solver. MAiNGO with RS+T requires
the least computational time for solving the problem including pinch analysis.

remaining solvers except for a single formulation (mixed-integer from Eq. (11) in FS) solved with

BARON. The results of this study underline the different trade-off between dimensionality and

tightness of relaxations for the different solvers. Most solvers handled the increased dimensionality

associated with the FS formulation well, while MAiNGO (to a point) favors lower dimensionality

at the cost of more complex constraints. With all solvers, the simultaneous flowsheet optimization

and heat integration problem can be solved within less than four times the time required for the

flowsheet optimization without pinch analysis.

A table containing the solution times for all solver - formulation combinations is given in the SI.

With MAiNGO, using the standard formulation and RS+T was the fastest option. With the re-

maining solvers, the mixed-integer formulations generally performed better. For LINDOGLOBAL

and SCIP, the computational times were nearly identical regardless of whether the bilinear or the

big-M binary-containing formulation was used. Meanwhile, BARON seemed to work well with the

bilinear formulation, while ANTIGONE favored the BigM reformulation. Notably, the formulation

from [8] did not converge with any solver and choice of optimization variables (smallest achieved

optimality gap 13.8 % with LINDOGLOBAL), although the correct global optimum (as an upper

bound) was usually found quickly. This may be at least partially due to the increased dimension-

ality caused by introducing 60 optimization variables and 60 constraints in this particular case

study, which is a significant number, when considering RS formulations.

A similar study was conducted using the LNG process, the results of which are qualitatively similar

to the ones presented in Fig. 4 and can be found in the SI. There are three notable differences

between the results of that study and the one performed on the Regenerative Rankine Cycle. First,

the original formulation using the max function and RS+T performed very well with all solvers.
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Second, with that formulation, SCIP outperformed MAiNGO, which in turn outperformed the

other solvers. Third, the formulation adapted from Cassanello et al. [8] converged within 1,000 s

when using SCIP or BARON. Recall that no reference case without pinch analysis exists for that

process model.

5 Conclusion

We discussed different strategies for formulating the simultaneous flowsheet optimization and heat

integration problem and compared their computational performance when solved with different

global optimization solvers. In addition to the original formulation using the max function [12],

we tested variations of this formulation that use a smoothed max function, nonsmooth functions,

mixed-integer reformulations, or a combination thereof.

We tested three strategies in terms of choosing optimization variables, namely a reduced-space

formulation, a reduced-space formulation with the temperatures occurring in pinch analysis added

as optimization variables with corresponding constraints, and a full-space formulation. In the

reduced-space formulation, introducing pinch analysis into the flowsheet optimization problem

requires only few or even no additional variables, depending on the chosen formulation of the pinch

problem. For all cases comprising pinch analysis solved with our open-source solver MAiNGO, the

reduced-space formulation with temperatures added as optimization variables performed best. This

was also the case for all other solvers with the LNG case, but not with the Regenerative Rankine

Cycle case. Recall that this formulation corresponds to eliminating as many variables and equality

constraints as possible by algebraic transformations and then adding the temperature variables

back to the problem along with the corresponding constraints. Our findings underline the known

trade-off between tight bounds and low dimensionality: The reduced-space formulation has lower

dimensionality but potentially weaker bounds than the formulations with more variables (see [2],

Section 3.4).

For all solvers, using the original formulation based on the max function for non-isothermal

streams led to good performance if all temperatures occurring in pinch analysis are optimization

variables. In MAiNGO, handling isothermal streams by employing a dummy temperature change

and handling them as non-isothermal resulted in the best performance. For the remaining solvers, it

appeared beneficial to use binary variables for isothermal streams. For SCIP and BARON, using

binary variables for all streams sometimes outperformed the remaining formulations. Overall,

MINLP formulations worked moderately well for most solvers, but are unsuitable for MAiNGO.

The tested smoothing approaches did not prove useful for global optimization of the considered

flowsheets, since a heuristic treatment of the nonsmooth functions for upper bounding worked

well in practice, and the smoothing did indeed weaken the relaxations. Based on these finding,
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we recommend using the original formulation based on the max function for non-isothermal and

binary variables for isothermal streams. In terms of dimensionality, the reduced-space formulation

with added temperature variables worked best for MAiNGO for all cases and for most other solvers

for the LNG case. However, for the Regenerative Rankine Cycle, BARON, LINDOGLOBAL and

SCIP performed better when using the full-space formulation.

Overall, in the two studies conducted with multiple solvers, MAiNGO outperformed most of

the remaining commercial and open-source solvers tested in both the cases with and without

pinch analysis when choosing the respective best-performing formulation for each solver. The only

exception is one optimization conducted with SCIP in the LNG case. In general, MAiNGO appears

to favor low dimensionality at the cost of more complex constraints more than the other solvers

do. This is likely due to the fact that McCormick relaxations allow to exploit the reduced-space

formulation better than the auxiliary variable method does. However, additional studies should

be conducted to confirm this.
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