000917577 001__ 917577
000917577 005__ 20240712112856.0
000917577 0247_ $$2doi$$a10.1016/j.compchemeng.2022.107899
000917577 0247_ $$2ISSN$$a0098-1354
000917577 0247_ $$2ISSN$$a1873-4375
000917577 0247_ $$2Handle$$a2128/33666
000917577 0247_ $$2WOS$$aWOS:000926599000004
000917577 037__ $$aFZJ-2023-00779
000917577 082__ $$a660
000917577 1001_ $$0P:(DE-HGF)0$$aSchultz, Eduardo S.$$b0
000917577 245__ $$aSatisfaction of path chance constraints in dynamic optimization problems
000917577 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000917577 3367_ $$2DRIVER$$aarticle
000917577 3367_ $$2DataCite$$aOutput Types/Journal article
000917577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673959382_29003
000917577 3367_ $$2BibTeX$$aARTICLE
000917577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917577 3367_ $$00$$2EndNote$$aJournal Article
000917577 520__ $$aWe propose an algorithm that calculates heuristically optimal solutions for dynamic optimization problems with path chance constraints. The solution is a feasible point in the chance constraint sense and an optimal point of an approximated problem. Uncertainty in parameters and initial conditions is modelled as Gaussian distributions. The method solves nonlinear programs (NLP) generated by replacing the probability constraint by a set of approximated deterministic pointwise constraints with a right-hand side restriction. For each NLP solution, the probability of constraint violation is calculated by Monte Carlo integration. When the NLP solution does not respect the chance constraint, new pointwise constraints are added, and we update the approximation and the restriction with the results from Monte Carlo integration. These steps are repeated until a feasible solution is found. The algorithm terminates after a finite number of iterations under mild assumptions. We demonstrate the algorithm in a fed-batch bioreactor case study, showing that it provides a solution in a shorter CPU time and fewer iterations when compared to using a fixed set of pointwise constraints where only the restriction is updated.
000917577 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000917577 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917577 7001_ $$0P:(DE-HGF)0$$aOlofsson, Simon$$b1
000917577 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b2
000917577 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3$$eCorresponding author$$ufzj
000917577 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2022.107899$$gVol. 164, p. 107899 -$$p107899 -$$tComputers & chemical engineering$$v164$$x0098-1354$$y2022
000917577 8564_ $$uhttps://juser.fz-juelich.de/record/917577/files/Robust_Dynamic_Optimization_v3__elsevier_copyright.pdf$$yOpenAccess
000917577 909CO $$ooai:juser.fz-juelich.de:917577$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917577 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000917577 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000917577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ
000917577 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b3$$kRWTH
000917577 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000917577 9141_ $$y2022
000917577 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917577 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000917577 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2021$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-13
000917577 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000917577 920__ $$lyes
000917577 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000917577 9801_ $$aFullTexts
000917577 980__ $$ajournal
000917577 980__ $$aVDB
000917577 980__ $$aUNRESTRICTED
000917577 980__ $$aI:(DE-Juel1)IEK-10-20170217
000917577 981__ $$aI:(DE-Juel1)ICE-1-20170217