001     917577
005     20240712112856.0
024 7 _ |a 10.1016/j.compchemeng.2022.107899
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/33666
|2 Handle
024 7 _ |a WOS:000926599000004
|2 WOS
037 _ _ |a FZJ-2023-00779
082 _ _ |a 660
100 1 _ |a Schultz, Eduardo S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Satisfaction of path chance constraints in dynamic optimization problems
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673959382_29003
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose an algorithm that calculates heuristically optimal solutions for dynamic optimization problems with path chance constraints. The solution is a feasible point in the chance constraint sense and an optimal point of an approximated problem. Uncertainty in parameters and initial conditions is modelled as Gaussian distributions. The method solves nonlinear programs (NLP) generated by replacing the probability constraint by a set of approximated deterministic pointwise constraints with a right-hand side restriction. For each NLP solution, the probability of constraint violation is calculated by Monte Carlo integration. When the NLP solution does not respect the chance constraint, new pointwise constraints are added, and we update the approximation and the restriction with the results from Monte Carlo integration. These steps are repeated until a feasible solution is found. The algorithm terminates after a finite number of iterations under mild assumptions. We demonstrate the algorithm in a fed-batch bioreactor case study, showing that it provides a solution in a shorter CPU time and fewer iterations when compared to using a fixed set of pointwise constraints where only the restriction is updated.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Olofsson, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2022.107899
|g Vol. 164, p. 107899 -
|0 PERI:(DE-600)1499971-7
|p 107899 -
|t Computers & chemical engineering
|v 164
|y 2022
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/917577/files/Robust_Dynamic_Optimization_v3__elsevier_copyright.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917577
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21