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Abstract

We propose an algorithm that calculates heuristically optimal solutions for dynamic opti-
mization problems with path chance constraints. The solution is a feasible point in the
chance constraint sense and an optimal point of an approximated problem. Uncertainty
in parameters and initial conditions is modelled as Gaussian distributions. The method
solves nonlinear programs (NLP) generated by replacing the probability constraint by a set
of approximated deterministic pointwise constraints with a right-hand side restriction. For
each NLP solution, the probability of constraint violation is calculated by Monte Carlo in-
tegration. When the NLP solution does not respect the chance constraint, new pointwise
constraints are added, and we update the approximation and the restriction with the results
from Monte Carlo integration. These steps are repeated until a feasible solution is found.
The algorithm terminates after a finite number of iterations under mild assumptions. We
demonstrate the algorithm in a fed-batch bioreactor case study, showing that it provides a
solution in a shorter CPU time and fewer iterations when compared to using a fixed set of
pointwise constraints where only the restriction is updated.
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1. Introduction

Satisfaction of path constraints in industrial processes is fundamental to guarantee safe
operation, product specification, and fulfilment of environmental regulations. In industrial
processes, uncertainty has different sources, e.g., process model mismatch or error in the
model parameters, cf. the review articles (Pistikopoulos, 1995; Bemporad and Morari, 1999;
Geletu and Li, 2014). Thus, dynamic optimization algorithms that guarantee satisfaction
of path constraints under uncertainty are desired (Srinivasan et al., 2003). Herein, we are
interested in computing feasible solutions to offline dynamic optimization problems with
uncertain parameters and initial conditions, assuming correct model structure. Different
approaches exist to deal with uncertain variables, such as worst-case scenario, multi-scenario,
and probabilistic optimization that we briefly describe in the next section.

We employ the probabilistic approach and we focus on optimization problems with single
chance constraints, i.e., with one probability constraint for each state constraint of the sys-
tem. Additionally, each state constraint under uncertainty does not need to be enforced over
the whole domain. Instead, we calculate the probability of the constraint to be respected over
the joint distribution of the Gaussian distributed parameters and the independent variable
domain, i.e., if we sample from the parameter normal distribution and the independent vari-
able domain, the probability of constraint violation must be below a user-defined maximum.
As a simple example, we can think about a reactor with an uncertain kinetic parameter k0,
described by a normal distribution, that operates from time t0 to tf . The state constraints
are the reactor temperature and pressure. For each, a given upper bound needs to be re-
spected with a probability of 90%. This probability is calculated over the uncertain kinetic
parameter and the time interval [t0, tf ].

The methods available to solve dynamic optimization problems with chance constraints
(e.g., Srinivasan et al. (2003); Telen et al. (2015); Shi et al. (2016)) usually employ a pro-
cedure to approximate the probability constraint, assuming the state can be described by a
Gaussian distribution at each point of the domain (which is not valid for nonlinear systems
(Ricardez-Sandoval, 2012)). The approximated constraints are then enforced only on a finite
number of points over the domain of the independent variable. Additionally, a restriction on
the resulting constraints is often imposed. In the following we refer to this as “pointwise”
constraints. The satisfaction of path constraints under uncertanty, over the whole domain,
is only obtained by enforcing many pointwise constraints. There are no available methods in
the literature that solve dynamic optimization problems with guaranteed satisfaction of the
state chance constraints over the whole domain, or as a probability of the joint distribution
of the parameters and the independent variable domain.

In this work we deal with these issues and propose an algorithm, where the optimiza-
tion problem with path constraint enforces the state constraint over a joint distribution of
the uncertain parameters and independent variable domain. We use ideas from our previous
works that guarantee satisfaction of path constraint in dynamic systems without uncertainty
(Fu et al., 2015; Faust et al., 2016; Schultz et al., 2020a,b). We extend the methodology for
the case where the parameters and initial conditions of ODEs systems are uncertain. The
method consists of propagating the uncertainty through the dynamic system approximately
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using the method of Srinivasan et al. (2003). Since the propagation is exact only for linear
systems, we correct the resulting distributions with a Monte Carlo integration step. For
a user-defined threshold on the constraint satisfaction probability, an explicit path chance
constraint can be calculated using the quantile function of normal distributions. The approx-
imated path constraint is then discretized as pointwise constraints. A restriction is imposed
on each pointwise constraint, resulting in a nonlinear program (NLP) approximation of
optimization problem.

In each iteration, we solve the approximated problem with an NLP local solver. For each
solution, the algorithm calculates the probability of violation of the path chance constraint
using Monte Carlo integration for a fixed user-defined confidence. If the solution does
not respect the chance constraint of the original problem, we calculate the probability of
violation over each interval of the domain between the points where the pointwise constraints
are enforced. We employ as an upper bound for the probability of violation on each interval,
the fraction of the overall probability proportional to the size of the interval compared to the
size of the domain. For example, if the probability of violation must be below 10% from time
0 to 10, the probability of violation from time 0 to 5 must be below 5%. The intervals with
probability of violation greater than the upper bound are halved with the addition of new
pointwise constraints. Then, each approximated constraint is updated. Next, the restriction
is updated based on the empirical quantile function at each point where the constraint is
enforced. The restriction is only updated if the approximation gives a pointwise probability
of violation smaller than the one calculated by Monte Carlo sampling. We show that the
algorithm finds a solution of the original problem that respects the chance constraint in a
finite number of iterations. We do not verify the optimality condition of the calculated point
for the original problem since such conditions are not available for general nonlinear systems
with probability constraints. However, we assume that the result is a heuristically optimal
point, since it is an optimal point of the approximated problem. Our main assumption is that
there exists a solution where the probability constraint is not active, i.e., the problem has a
feasible point that is not the exact user-defined upper bound for probability of violation.

We demonstrate the algorithm in a simple bioreactor case study adapted from literature
(Visser et al., 2000; Fu et al., 2015; Schultz et al., 2020b). The results show that the
algorithm finds a feasible solution after a small number of iterations. We also show that
using existing approaches that enforce the approximated constraint on a finite number of
points and continuously update the restriction may fail, if the number of points is small.
Additionally, if we use the same number of points as initial setup of the proposed algorithm,
a feasible solution is found. The solution is found in a shorter CPU time and after solving
fewer NLPs when compared to using a fixed number of pointwise constraints where only the
restriction is updated along the iterations.

In the next section we discuss different approaches to solving optimization problems
with uncertain variable. Thereafter, we state the dynamic optimization problem with path
chance constraints. Section 4 presents the development of the algorithm to solve the dynamic
optimization problem, and a case study is presented in Section 5. Section 6 presents the
conclusions and possible future work.
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2. Background information

Uncertain variables are often described by continuous probability density functions (PDFs)
or bounded distributions, e.g., Latin hypercube, ellipsoid. Different methods are available in
the literature to handle uncertainty during optimization depending on how the uncertainty
is characterized. The main approaches are (Ruppen et al., 1995; Puschke et al., 2017):

• Worst-case optimization, also known as robust optimization: this method enforces
the constraint for the worst-case realization of the uncertain variable (Ruppen et al.,
1995), resulting in a min-max problem (Dimitriadis and Pistikopoulos, 1995). This
approach has the main advantage that the solution is guaranteed to be feasible. How-
ever, the solution is conservative (Kadam et al., 2007) in a statistical sense, i.e., for
most realizations of uncertain variable(s) (Ruppen et al., 1995). Robust optimization
is applied in many studies regarding optimal control (Dimitriadis and Pistikopoulos,
1995; Mohideen et al., 1996; Ma et al., 1999; Ma and Braatz, 2001; Nagy and Braatz,
2003; Diehl and Bjornberg, 2004; Nagy and Braatz, 2004; Diehl et al., 2008; Houska
et al., 2012; Shi et al., 2016; Houska et al., 2018; Puschke et al., 2018), and the main
difficulty is the identification of the worst-case scenario, as this depends on the op-
timization variables. For nonlinear dynamic systems, this involves solving a global
dynamic optimization problem, e.g., Mohideen et al. (1996). Although methods exist
for solving dynamic problems globally (Chachuat et al., 2006; Lin and Stadtherr, 2007;
Zhao and Stadtherr, 2011; Scott et al., 2013; Houska and Chachuat, 2014, 2019), no
solvers are currently available (Puschke et al., 2018) and the computational time is
usually prohibitive even for small problems.

• Multi-scenario optimization (Huang et al., 2009; Puschke and Mitsos, 2016; Puschke
et al., 2017): the uncertain variable sets are discretized and the constraints are enforced
for finite low-cardinality subsets. This approach is advantageous because it allows the
selection of subsets that are more likely to occur, instead of worst-case values that
may never happen, resulting in less conservative solutions. However, selecting a good
subset is non-trivial, so heuristics are usually employed (Puschke and Mitsos, 2016;
Puschke et al., 2017). The main drawback of this approach is that it needs to simulate
the dynamic model for each subset, which increases the solution time.

• Probabilistic approach (Terwiesch et al., 1994, 1998; Wendt et al., 2002; Srinivasan
et al., 2003; Li et al., 2004; Nagy and Braatz, 2007; Li et al., 2008; Ricardez-Sandoval,
2012; Telen et al., 2015; Nimmegeers et al., 2016; Jiang et al., 2017; Maußner and
Freund, 2018a,b): the uncertain variables are approximated using known PDFs and
constraints are defined as chance constraints. The optimization method enforces a
given threshold probability of satisfying the constraint (Wendt et al., 2002). The
choice of probability thresholds provides a trade-off between reliability and perfor-
mance. The main problem is to predict the probability of the output constraint for
nonlinear models (Wendt et al., 2002). For example, a nonlinear transformation of a
normal distribution may result in a non-normal distribution (Terwiesch et al., 1994;
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Ricardez-Sandoval, 2012). Additionally, estimating the PDFs of the parameters may
be a difficult task, because of ill-posed inverse problems, scarce data and expensive
experimentation setups. However, different methods exist to perform parameter esti-
mation as shown in Tarantola (2005).

Additionally, hybrid approaches can also be employed. For example, some recent works
have addressed optimization problems where the uncertain variables are partially stochastic
and described by a PDF, and partially are described by a closed interval (van Ackooij et al.,
2016; González Grandón et al., 2017; Adelhütte et al., 2020; Berthold et al., 2021). For
example, see the following chance constraint:

P (g(u, p, t) ≤ 0 ∀ t ∈ [0, tf]) > ξ

where u is the decision variable, p is an uncertain variable described by a PDF and t is an
uncertain variable described by a closed interval. In this case, the probability constraint is
related to probability of g to be respected over the whole interval [0, tf] for a defined u. An
optimization problem with this type of constraint can be viewed as a generalised SIP, that
is often more difficult to solve.

In this work, we consider probabilistic approach, where the uncertain variables are de-
scribed by Gaussian distributions. This choice is motivated by the fact that characterization
of uncertain variables by Gaussian distribution is a common approach when solving opti-
mization problems under uncertainty (e.g., Jazwinski (1970); Ierapetritou and Pistikopoulos
(1996); Schwarm and Nikolaou (1999); Li et al. (2004). Two key considerations in solving
this problem are constraint formulation and constraint enforcement. Optimization problems
may have joint probability constraints, where different state constraints must be satisfied
with a desired probability, or single chance constraints where the probability of satisfaction
for each state constraint is enforced. The probability may also be related to the value of
the constraint at fixed point of the domain (e.g., the concentration of a product at the final
time), a finite subset of points (e.g., the temperature every one minute), or over a continuous
part of the domain (e.g., the probability that the maximum pressure of a reactor is over the
maximum allowed in the equipment must be below 1% during the whole operation). The
main difficulty in enforcing a probability constraint over a continuous part of the domain is
that it results in a semi-infinite optimization problem, i.e., a problem with infinitely many
probabilistic constraints.

3. Problem statement

We are interested in solving dynamic optimization problems with finite degrees of freedom
u ∈ U = {u ∈ IRnu : ul,i ≤ ui ≤ uu,i, i = 1, . . . , nu}, i.e., after control vector parametrization.
A system of ordinary differential equations describes the model dynamics and the states are
obtained by integration of the system along the independent variable t ∈ T = [t0, tf ], for
given initial conditions, parameters and controls. The model has time-invariant uncertain
parameters θ ∈ Θ ⊂ IRnθ . We make the following assumption regarding the parameters:
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Assumption 1. Each component of θ is an independent Gaussian distributed random vari-
able, θi, with known mean value, θ̄i, and standard variation, σθi

We employ an approach similar to Puschke et al. (2018), where the objective function is
optimized for the nominal value of the parameters θ̄ and robustness is regarding constraint
satisfaction, resulting in the following optimization problem:

min
u∈U

φ
(
x(tf , u, θ̄)

)
(1a)

s.t. ẋ(t, u, θ) = f(x(t, u, θ), t, u, θ)), ∀ t ∈ T, (1b)

x(t0, θ) = x0(θ), (1c)

Pr(gi(x(tr, u, θr), tr, u, θr) > 0) ≤ ξi, i = 1, ..., ng (1d)

where x(t, u, θ) ∈ X ⊂ IRnx represents the differential variables with initial conditions
x0(θ) ∈ X ⊂ IRnx . The objective function is given by φ : X → IR and f : X ×T ×U ×Θ→
IRnx describes the differential equations. The problem has ng single chance path constraints,
with each constraint defined by Pr(·)−ξ ≤ 0 where ξ is a given tolerance level. The constraint
is related to a probability that gi, gi : X×T ×U×Θ→ IR, is greater than 0, i.e., probability
of violating gi. Note that the probability constraint is not enforced for all t ∈ T , instead
Eq. (1d) is the probability that gi is greater than 0 for a random point {tr, θr}, with tr and
θr sampled from T and Θ, respectively. This is different from previous work (Srinivasan
et al., 2003; Telen et al., 2015; Shi et al., 2016), where pointwise constraints are imposed for
a finite number of points on T , resulting in a chance constraint for each point. The objective
function and each path constraint gi are assumed to be sufficiently smooth.

The rationale behind this probabilistic approach is to cover general dynamic models,
without many assumptions about the dynamic model. Enforcing the constraint for all t ∈ T
is equivalent to imposing the constraint max

t∈T
gi(x(t, u, θ, t, u, θ) ≤ 0 for fixed u and with a

defined probability over Θ. Without further assumptions on gi and the dynamic model (e.g.,
linearity, convexity, monotonicity), the max function may be non-smooth or discontinuous
(see for example Berthold et al. (2021)). With the current formulation, we cover a broader
class of dynamic models, for which we make the follow less restricted assumption:

Assumption 2. gi is a Carathéodory function, i.e., gi(·, t, ·, θ) is continuous on X × U for
a.e. t ∈ T and θ ∈ Θ, and gi(x(·, u, ·), ·, u, ·) is measurable on T ×Θ for every u ∈ U .

Assumption 2 is necessary to guarantee that the probability constraint can be calculated
with a finite number of samples by Monte Carlo integration (Proposition 5.29, Shapiro et al.
(2014)). If this assumption is not valid, we cannot calculate the probability of constraint
violation based on Monte Carlo integration and the algorithm cannot guarantee the solution
is a true feasible point of the problem.

Assumption 3. Problem (1) has a feasible solution u∗ such that for any γ > 0, there exists
u ∈ U with ∥u− u∗∥ ≤ γ and Pr(gi(x(t, u, θ), t, u, θ) > 0) < ξi, i = 1, ..., ng.
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Assumption 3 refers to the existence of a feasible solution of problem (1) where the
probability constraint is not active. More details are given by Shapiro et al. (2014). The
proposed algorithm will fail to find a solution if the only possible solution to problem (1)
only exists when Pr(gi(x(t, u, θ), t, u, θ) > 0) = ξi.

4. Solution Algorithm

In this section, we first give a general overview of the algorithm, followed by a detailed
description of each step. The algorithm solves problem (1) by solving a sequence of sub-
problems. The first subproblem consists of an approximated dynamic optimization problem
(ADOP) where we transform problem (1) into an NLP, as follows:

1. Propagate the parameter θ probability density function, pdf(θ), through the dynamic
system following the method of Srinivasan et al. (2003) and generate an approximate
posterior distribution pdf(gi) for each t ∈ T . Remember that θ is Gaussian distributed
with known mean and variance. We briefly describe the method in section 4.1.

2. Generate a path constraint based on the mean value, ḡi, and standard deviation, σgi ,
of the approximated pdf(gi), ci(t, u) = ḡi(t, u) + βi(t)σgi(t, u) ≤ 0, where βi(t) is a
backoff function. Note that ci is based on the cumulative distribution function of gi.
We use a function instead of a constant value to be able to correct the approximation
along the domain.

3. Impose a restriction ci(t, u) ≤ −εi(t) on the path constraint. Here the restriction is
also a function. The reason is that the path constraint will be transformed later in
a set of pointwise constraints over the domain, and the restriction of each pointwise
constraint is different along the domain.

4. Replace the system of differential equations and the probabilistic constraint in (1) by
the propagation equations and deterministic path constraint, respectively.

5. Impose the constraint ci(t, u) on a finite number of points T d = {t1, . . . ,
tj, tj+1, . . . , tn} ∈ T .

The ADOP is only an NLP approximation of the original problem. Thus, for each
ADOP solution, the algorithm computes the probability of constraint violation, pi(u) =
Pr(gi(x(t, u, θ), t, u, θ) > 0), by Monte Carlo integration. The probability is computed for
a user-specified confidence level δi ∈ (0, 1). Note that δi is different from ξi (ξi is the
probability of constraint violation and δi is the confidence level used to compute (1d) by
Monte Carlo integration). Additionally, the algorithm also calculates the probability of
constraint violation on each point tj ∈ T d and for each interval (tj, tj+1] ∀ tj ∈ T d,∗ =
{t0} ∪ T d\{tf}.

The algorithm proceeds by calculating a local optimal point uk for the approximated
problem, where the superscript k denotes the iteration number. Then, it computes pi(u

k)±ϵpi
by Monte Carlo integration, where ϵpi is the error of Monte Carlo integration based on the
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variance of the expected value of the integration, for a confidence level δi. If pi(u
k)+ϵpi > ξi,

then uk is an infeasible point of problem (1), i.e., the chance constraint is not respected.
The algorithm updates T d, βi(t) and εi(t), and solves the approximated problem again.
If pi(u

k) + ϵpi ≤ ξi, then the solution is a feasible solution of the problem (1) and the
algorithm terminates and returns uk as a heuristically optimal point of problem (1), since it
is a local optimal point of the approximated problem and it is guaranteed feasible solution
of problem (1) with a confidence level δi.

In the next section, we describe how to propagate the uncertainty through the dynamic
system and generate ci(t, u). Then, the approximated problem is stated, followed by the
Monte Carlo algorithm used in this work. Next, we introduce the procedure to update βi(t),
εi(t) and T d. Finally, we present the algorithm to solve (1) and prove its finite termination.

4.1. Uncertainty propagation

The propagation follows the procedure employed by Srinivasan et al. (2003). We assume
that x(t, u, θ) can be described by a Gaussian distribution given u and for each t ∈ T .
We heuristically approximate the expected value x̄(t, u, θ̄) of x(t, u, θ) by integration of the
differential equations (1b) for the mean value of the parameters, θ̄. To calculate the variance
of the states at each point t, we first need to integrate the first-order derivative Slin(t, u, θ̄) =
∂x
∂θ
|t,u,θ̄. Then, we use a first-order Taylor expansion to calculate the variance of x(t, u, θ),

Vx(t, u, θ̄, σθ), based on the known variance of θ, Vθ, that is assumed to be a square diagonal
matrix, resulting in Vx(t, u, θ̄, σθ) = Slin(t, u, θ̄)VθS

⊤
lin(t, u, θ̄). Note that this propagation is

only exact for linear systems. For nonlinear systems, the distribution describing the state
at each point t is most likely not Gaussian and the mean value and standard deviation
are not the values calculated by the propagation equations (see for example the graphs of
Ricardez-Sandoval (2012)). The procedure results in the following system of equations:

˙̄x(t, u, θ̄) = f(x̄(t, u, θ̄), t, u, θ̄), x̄(t0) = x̄0 (2a)

Ṡlin(t, u, θ̄) =
∂f

∂x

∣∣∣∣
t,u,θ̄

Slin(t, u, θ̄) +
∂f

∂θ

∣∣∣∣
t,u,θ̄

, Slin(t0) = Slin,0 (2b)

Vx(t, u, θ̄, σθ) = Slin(t, u, θ̄)VθS
⊤
lin(t, u, θ̄). (2c)

Analogously, the approximated expected value of a constraint ḡi, that may be a single
state or a nonlinear function of the states, is calculated by the mean value of the param-
eters, i.e., ḡi(x(t, u, θ̄), t, u, θ̄) = gi(x(t, u, θ̄), t, u, θ̄). And the variance of the constraint,
Vgi(t, u, θ̄, σθ), is calculated using the chain rule:

Vgi(t, u, θ̄, σθ) =

(
Slin(t, u, θ̄)

∂gi
∂x

∣∣∣∣
t,u,θ̄

)
Vθ

(
Slin(t, u, θ̄)

∂gi
∂x

∣∣∣∣
t,u,θ̄

)⊤

. (3)

The standard deviations of the states σx(t, u, θ̄, σθ) and the constraints σgi(t, u, θ̄, σθ) are
the square root of the diagonal elements of Vx(t, u, θ̄, σθ) and Vgi(t, u, θ̄, σθ), respectively.
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4.2. Approximated optimization problem

In this section, we define the approximated problem that the algorithm solves in each
iteration. We first replace the original system of differential equations Eq. (1b) and (1c) by
Eqs. (2a) and we add the propagation equations of the mean value and standard deviation
of the states Eqs. (2b) and (2c) to the system. Next, using the cumulative distribution
function of gi, we generate the constraint:

ci(x̄, t, u, θ̄, σθ) = ḡi(x̄, t, u, θ̄) + βi(t)σgi(t, u, θ̄, σθ) (4)

where βi(t) is a backoff described by a piecewise constant function, i.e., βi(t) = β̃i,j, ∀ t ∈
(tj, tj+1], j = {0, . . . , Nβ,i − 1}, where Nβ,i is the number of line segments of βi, and β̃i,j ∈
IR≥0. We omit the arguments of x̄ to simplify the notation. Different from previous works
that use a constant β, we use a piecewise function to have a better approximation of the real
probability distribution along the domain. This way, each coefficient β̃i,j is used to correct
ci in order to have the probability of violation between tj and tj+1 close to the probability
calculated by Monte Carlo integration.

Although it is not an algorithm requirement, the initial discretization of βi(t) is usually
the same discretization applied to the controls (via control vector parametrization). As
we discuss in a previous work (Schultz et al., 2020b), this is a common practice since the
algorithm needs to compute the model states and sensitivities on those points. Thus the
length of line segments is not necessarily uniform, but, without loss of generality, we employ
the same discretization applied to the path constraint, which usually coincide with the
control discretization in the first iteration. We do not investigate the impact of this initial
setting on the algorithm performance because the impact depends on the model structure
and the initial guess, u0, what could result in misleading conclusions if analyzed for only
simple case studies.

Observe that setting βi(t) =
√

2erf−1(1 − 2ξi) and imposing ci(x̄, t, u, θ̄, σθ) ≤ 0, ∀ t ∈
T guarantees that Eq. (1d) is respected when f and gi are linear functions. However,
dynamic models describing industrial processes are usually nonlinear, and the propagation
of the uncertainty from θ to x and gi does not necessarily result in a Gaussian distribution
(Ricardez-Sandoval, 2012). For nonlinear systems, enforcing ci(x̄, t, u, θ̄, σθ) ≤ 0, ∀ t ∈ T ,
only approximates the constraint Eq. (1d). Moreover, the approximation can over-estimate
or underestimate the probability. Therefore, we impose a restriction on ci to guarantee
that after a finite number of iterations the new constraint overestimates the probabilistic
constraint. Then, we have the path constraint:

ci(x̄, t, u, θ̄, σθ) = ḡi(x̄, t, u, θ̄) + βi(t)σgi(t, u, θ̄, σθ) ≤ −εi(t), ∀ t ∈ T (5)

where εi(t) = ε̃i,j, ∀ t ∈ (tj, tj+1], j = {0, . . . , Nβ,i − 1} is a piecewise constant function with
ε̃i,j ∈ IR≥0. We use a piecewise constant function to impose different restrictions over the
domain based on the error of the distribution function on each point tj. Note that the error
of ci is reduced by adding more piecewise line segments to ε(t) and β(t), for a fixed u. The
algorithm iteratively improves the approximation by increasing the number of line segments
of both functions along the iterations.
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Additionally, we impose the path constraint in a finite number of points T d = {t1, . . . , tj,
tj+1, . . . , tn} ∈ T . Although it is not a requirement, we employ the same number of segments
for βi(t) and εi(t). Moreover, T d defines the points where the piecewise constant functions
βi(t) and εi(t) change their constant values. Substituting the probability constraint, Eq. (1d),
by Eq. (5) and imposing the constraint only on the finite subset T d, results in the following
optimization problem:

min
u∈U

φ
(
x̄(tf , u, θ̄))

)
(6a)

s.t. ci(x̄, t, u, θ̄, σθ) ≤ −εi(t), ∀ t ∈ T d, i = 1, ..., ng, (6b)

where ci(u, t) is given by Eq. (4). x̄(t, u, θ̄) is calculated by Eq. (2a), σx(t, u, θ̄, σθ) is computed
by the propagation equations (2b) and (2c), where the standard deviation is the square root
of the diagonal elements of Vx. ḡi(x̄, t, u, θ) is calculated using the mean value of θ and Eq. (3)
computes the variance Vgi(t, u, θ̄, σθ), where the square root of the diagonal elements gives
σgi(t, u, θ̄, σθ).

4.3. Monte Carlo Integration

Each solution ū of problem (6) may be either a feasible or infeasible solution point of
the DOP. We employ Monte Carlo integration, for a user-specified confidence δi ∈ (0, 1),
to compute the probability of constraint violation ū, pi(ū) = Pr(gi(x(t, ū, θ), t, ū, θ) > 0)
for the candidate solution. Before introducing the algorithm to calculate pi(ū), let us first
define the probability of constraint violation over T and Θ. Note that t ∈ T can be viewed
as an additional parameter with a probability density function equal to 1/(tf − t0), i.e., the
probability of any point t ∈ [t0, tf ] to occur is the same.

pi(ū) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ tf

t0

pdf(θ1) . . . pdf(θnθ
)pdf(t)

1(0,∞)(gi(x(t, ū, θ), t, ū, θ)) dt dθ1 . . . dθnθ
(7)

where the indicator function 1(0,∞) is:

1(0,∞)(gi(x(t, ū, θ), t, u, θ)) =

{
0, if gi(x(t, ū, θ), t, ū, θ) ≤ 0

1, if gi(x(t, ū, θ), t, ū, θ) > 0

Note that the inner integral of Eq. (7) describes the probability of violation over T . Since
T is uniformly distributed, we have

pi,t(ū, θ) =

∫ tf
t0
1(0,∞)(gi(x(t, ū, θ), t, ū, θ)) dt

tf − t0

that is easily calculated by integration of the dynamic system over T . On the other hand,
the integrals over Θ are expensive to evaluate, motivating the use of Monte Carlo method.
Therefore, we compute pi(ū) with N realizations of Θ by:
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pi,N(ū) = N−1

N∑
m=1

pi,t(ū, θ̂
(m)) (8)

where N is the number of realizations of the normal distributed vector θ, resulting in θ̂ ∈
IRnθ×N . The superscript (m) denotes the value of θ in each realization.

Since gi(x(t, ū, θ), t, ū, θ) is a Caratheodory function, pi,N(ū) → pi(ū) when N → ∞,
by the law of large numbers (Shapiro et al., 2014). If N is large, then pi,N(ū, θ) be-
haves as Gaussian-distributed and we can define a confidence interval for pi(ū) as [pi,N(ū)−
ϵpi, pi,N(ū) + ϵpi]. The error of the integration is given by ϵpi = zispi,t , where spi,t denotes

the sample standard deviation of pi,t and zi =
√

2erf−1(δi). The solution ū may have three
different outcomes:

(1) pi,N(ū) + ϵpi ≤ ξi, i = 1, . . . , ng: ū respects the chance constraint of problem (1) with
confidence level δ;

(2) pi,N(ū)− ϵpi > ξi: ū is infeasible;

(3) pi,N(ū) − ϵpi ≤ ξi < pN,i(ū) + ϵpi: nothing can be stated about the feasibility of ū. It
is necessary to increase N to reduce ϵpi.

An initial number of samples Nk results in pki,N ± zis
k
pi,t

. Since the error of Monte Carlo

integration is proportional to 1√
N

, we update the required number of samples as:

Nk+1 = Nk

(
max

i ∈ {1,...,ng}

(
ϵkpi

|p̃ki,N − ξi|

))2

. (9)

Algorithm 1 proceeds by drawing an initial number of samples N0, specified by the user.
Then, it calculates p0i,N ± ϵ0pi. If pi,N(ū)0− ϵ0pi > ξi for any i ∈ 1, . . . , ng, then ū is infeasible .
If p0i,N(ū)+ϵ0pi ≤ ξi, i = 1, . . . , ng, then the algorithm returns ū is a feasible point. Otherwise,
the required number of samples is updated using Eq. (9) and we draw Nk+1−Nk additional
samples and calculate the new pk+1

i,N ± ϵk+1
pi . The algorithm repeats the procedure until ū is

either a feasible or unfeasible point for a δi confidence.

Algorithm 1 also calculates the probability of constraint violation p
(tj ,tj+1)
i,N (ū) on each

interval (tj, tj+1], for each tj ∈ T d* = t0 ∪ T d\tf, and the empirical cumulative probability

distribution function of gi, Ĝ
tj
i,N(ū), for each point tj ∈ T d. Both are used to iteratively

update βi(t) and ϵi(t) as described in the next section. Algorithm 1 computes p
(tj ,tj+1)
i,N (ū)

using Eq. (8), replacing pi,t(ū, θ) by:

p
(tj ,tj+1)
i,g (u, θ) = lim

t∗j→tj

∫ tj+1

t∗j
1(0,∞)(gi(x(t, u, θ), t, u, θ)) dt

t∗j − tj+1

(10)

where p
(tj ,tj+1)
i,g denotes the probability of constraint violation in the interval (tj, tj+1].
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Algorithm 1 Monte Carlo Integration

1: inputs : Initial number of samples, N0; desired confidence, δi; candidate optimal solu-
tion, ū; maximum approximation error, εapp; iteration counter k = 0;

2: repeat
3: k ← k + 1
4: Compute pkN,i(ū) and ϵkpi(ū), i = 1, . . . , ng by Monte Carlo integration

5: Compute p
(tj ,tj+1),k
i,N (ū), for each tj ∈ T d*, i = 1, . . . , ng using Eqs. (8) and (10)

6: Compute Ĝ
tj ,k
i,N (ū), tj ∈ T d, i = 1, . . . , ng using the value of gi at each point tj for

each element of θ̂
7: if pki,N(ū)− ϵkpi(ū) > ξi for any i ∈ 1, . . . , ng then

8: Return pki,N(ū), ϵkpi(ū), p
(tj ,tj+1),k
i,N (ū), Ĝ

tj ,k
i,N (ū),

9: Terminate.
10: else if pki,N(ū) + ϵkpi(ū) ≤ ξi, i = 1, . . . , ng then

11: Return pki,N(ū), ϵkpi(ū), p
(tj ,tj+1),k
i,N (ū), Ĝ

tj ,k
i,N (ū)

12: Terminate.
13: else
14: Nk+1 ← Nk, using Eq. (9)
15: Draw more Nk+1 −Nk samples from θ
16: end if
17: until pki,N(ū)− ϵkpi(ū) > ξi for any i ∈ 1, . . . , ng or pki,N(ū) + ϵkpi(ū) ≤ ξi, i = 1, . . . , ng

4.4. Update of back-off, restriction, and pointwise constraints

Along the iterations, βi(t), ϵi(t), and T d are updated. Let the superscript k denote
the iteration index. The update policy consists of halving the intervals (tj, tj+1] where

p
(tj ,tj+1)
i,N (u) >

ξi(tj−tj+1)

(t0−tf)
:

T d,k+1 = T d,k ∪
{
tj+1 + tj

2

∣∣∣∣ tj ∈ T d*,k ∧ p̃
(tj ,tj+1)
i,N (uk) >

ξi(tj − tj+1)

(t0 − tf)

}
. (11)

The algorithm updates β(t) using a linear correlation between the ξi and p
(tj ,tj+1),k
i,N (uk):

β̃k+1
i,tj

= β̃k
i,tj

1− ξi
tj+1−tj
tf−t0

1− p
(tj ,tj+1),k
i,N (uk)

, tj ∈ T d*,k (12)

βk+1
i (t) = β̃k+1

i,tj
, ∀ t ∈ (tj, tj+1], j = 0, . . . , |T d*,k| − 1. (13)

Alternative update strategies could also be applied to update βi(t), e.g., adding more
points where the system dynamics are fast. Since the dynamics may change with the param-
eters and control values, it may be difficult to identify where we have fast and slow dynamics
over the domain. Thus, we chose to use this simple and well-known strategy (to halve the
intervals) because it works for situations where the dynamic of the system is substantially
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affected by the inputs and parameters values, leaving the investigation of the optimal update
policies based on the system dynamics for future work.

To update the restriction, the algorithm uses the empirical cumulative distribution func-
tion of gi for each point tj ∈ T d,k, Ĝ

tj ,k
i,N (uk), and the quantile function

Q(t, ξi, u
k) = inf{Ĝt,k

i,N(uk) ∈ IR : Ĝt,k
i,N(uk) ≥ 1− ξi}

where Q(t, uk, ξi) returns the threshold value of gi below which random samples from the
empirical probability distribution Ĝ fall with a probability 1− ξi.

The pointwise error of ci(x̄, t, u
k, θ̄, σθ) is given by

∆cki (x̄, t, uk, θ̄, σθ, ξi) = min(0, ck+1
i (0, x̄, t, uk, θ̄, σθ)−Q(t, uk, ξi)).

The evaluation of ci uses the updated βk+1(t) and the restriction update policy is:

ε̃k+1
i,tj

= ∆cki (x̄j, tj, u
k, θ̄, σθ, ξi), tj ∈ T d*,k (14)

where we use the simplified notation x̄j = x̄(tj, u
k, θ̄). Then, we have:

εk+1
i (t) = ε̃k+1

i,tj
, ∀ t ∈ (tj, tj+1], j = 0, . . . , |T d*,k| − 1 (15)

4.5. Robust dynamic optimization algorithm

We introduce Algorithm 2 below and present the algorithm workflow in Appendix A.
The inputs of the algorithm are:

• initial guess u0;

• initial set of constraint enforcement points T d,0;

• initial backoff β0
i (t) ≥ 0. We employ β0

i (t) =
√

2erf−1(1 − 2ξi) ∀ t ∈ (tj, tj+1], j =
0, . . . , |T d*,0| − 1, that is the optimal choice for the linear case, but this is not a
requirement;

• initial restriction ε0i (t) ≥ 0. We set ε0i (t) = 0 ∀ t ∈ (tj, tj+1], j = 0, . . . , |T d*,0| − 1
to avoid having a Monte Carlo integration step for the initial guess to calculate the
actual error of the approximation at each point tj;

• desired confidence level of the solution δi;

• initial number of samples employed by Algorithm 1;

Algorithm 2 solves problem (1) by solving a sequence of approximated problems. In each
iteration, Algorithm 2 solves Eq. (6) resulting in a candidate solution uk. The probability of
constraint violation for the candidate solution uk is calculated using Monte Carlo integration
(Algorithm 1) for a confidence δi. Algorithm 2 updates βk

i (t), εki (t), and T d,k when uk

is an infeasible point of problem (1). After each update the algorithm again solves the
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Algorithm 2 Dynamic optimization with path chance constraint

1: inputs : initial guess u0, initial backoff β0
i (t), initial restriction εi(t), initial set of points

T d,0, confidence level δ, initial number of samples N0, iteration counter k = 0.
2: repeat
3: k ← k + 1
4: Calculate uk by solving problem (6)

5: Compute pki,N(uk), ϵkpi(u
k), p

(tj ,tj+1),k
i,N (uk) ∀ tj ∈ T d*, Ĝ

tj ,k
i,N (uk), ∀ tj ∈ T d* using Algo-

rithm 1
6: if pki,N(uk) + ϵkpi(u

k) > ξ then
7: Update T d,k using (11)
8: Update βi(t)

k using (12) and (13)
9: Update εi(t)

k using (14) and (15)
10: else
11: Return uk

12: Terminate.
13: end if
14: until pki,N(uk) + ϵkpi(u

k) ≤ ξ

approximated problem and repeats the previous steps. The algorithm terminates when uk

is a feasible point of (1) and is also an optimal point of the approximated problem.
We claim no guarantee that Algorithm 2 converges monotonically towards an optimal

point u∗ over the iterations. The main reason is that the models’ equations are usually
nonlinear and problems (1) and (6) are nonconvex. Since the subproblems are solved with
local solvers, the algorithm may find different local minima in each iteration. However, we
can prove that the algorithm finds an optimal point after a finite number of iterations.

Theorem 1. Under Assumptions 1 to 3, Algorithm 2 terminates after a finite number of
iterations.

Proof. For each solution uk of Problem (6), the algorithm corrects βi(t) to better approx-
imate the probability of violation on each interval, and imposes a restriction εi(t) ≥ 0,
based on the error of the approximated constraint. Algorithm 2 calculates the proba-
bility of violation using Monte Carlo integration (Algorithm 1) with a finite number of
samples by assumption (1) to (3). Additionally, it halves the intervals (tj, tj+1], where

p
(tj ,tj+1)
i,N (u) >

ξi(tj−tj+1)

(t0−tf)
. In the limit, after infinite iteration, |T d| → ∞, εi(t) → 0 and the

error of the approximated constraint tends to zero. By assumption (3), there exists an ϵ̄ > 0
where Pr(gi(x(t, u, θ), t, u, θ) > 0) + ϵ̄ < ξi and a sequence {uk} ⊂ U that converges to a
feasible solution u∗ with Pr(gi(x(t, u∗, θ), t, u, θ) > 0) + ϵ̄ < ξi, i = 1, ..., ng (Shapiro et al.,
2014). Therefore, by compactness of U and sufficient smoothness of f and g, there exists a
finite number of points T d ⊂ T where εi(t) < ϵ̄, ∀ t ∈ T . Since the algorithm continuously
increases the number of points in T d, after a finite number of iteration, the solution to the
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approximated problem is a feasible point of problem (1) and the optimal solution to the
approximated problem.

4.6. Scalability

If the problem has more than one constraint, the algorithm scales, in principle, as the
underlying single shooting algorithm. The main impact of additional constraints is the
computation additional sensitivities in the optimization step. This step may increase sig-
nificantly the computational time depending on the method employed. The Monte Carlo
computation will have almost no additional burden, since the more expensive step during
Monte Carlo computation is the integration of the dynamic model, and this step does not
change with additional constraints. Only additional fast arithmetical computations will be
required. This drives our conclusion that the algorithm scales as the sensitivity method
employed in the single shooting method.

5. Case study

We demonstrate Algorithm 2 in a case study often used in the optimization under un-
certainty literature (Srinivasan et al., 2003; Puschke et al., 2017, 2018). The case study
considers a semi-batch penicillin fermentation process adapted from previous works (Visser
et al., 2000; Fu et al., 2015; Schultz et al., 2020b). The adaptation consists of transforming
the path constraint into a path chance constraint and assuming that the parameters are
Gaussian distributed. The optimization problem is described by:

min
x,u
−x3 (tf = 40)

s.t. ẋ1(t, u, θ) =
µx1(t)x2(t)

Klx1(t) + x2(t)
− ux1(t)

x4(t)
,

ẋ2(t, u, θ) =
−µx1(t)x2(t)

Yxs(Klx1(t) + x2(t))
−Mxx1(t)−

θmx1(t)x2(t)

Yp(x2(t) + Kp + x2(t)2

Ki
)
+

u
S0 − x2(t)

x4(t)
,

ẋ3(t, u, θ) =
θmx1(t)x2(t)

x2(t) + Kp + x2(t)2

Ki

−Kxpx3(t)− u
x3(t)

x4(t)
,

ẋ4(t, u, θ) = u,

x(t = 0) = [1, 0.2, 0.0001, 250] ,

Pr(x2 > 0.5) ≤ 0.1,

0 ≤ u ≤ 10,

where θ = {µ, θm, Ki, Kl, Kp, Kxp,Mx, Yp, Yxs} denotes the model parameters. The model
parameter means and standard deviations are listed in Table 1.

The original optimization problem has one control that is a function of time, but here
we use control vector parametrization to discretize the control. We use piecewise constant
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Table 1: Parameters for the penicillin fermentation model.

Parameter Mean Value Variance Standard deviation
µ 1.10× 10−1 1.10× 10−4 1.05× 10−2

θm 4.00× 10−3 4.00× 10−6 2.00× 10−3

Ki 1.00× 10−1 1.00× 10−4 1.00× 10−2

Kl 6.00× 10−3 6.00× 10−6 2.40× 10−3

Kp 1.00× 10−4 1.00× 10−7 3.16× 10−4

Kxp 1.00× 10−2 1.00× 10−5 3.16× 10−3

Mx 2.90× 10−2 2.90× 10−5 5.38× 10−3

Yp 1.20 1.20× 10−3 3.46× 10−2

Yxs 4.70× 10−1 4.70× 10−4 2.17× 10−2

functions with 40 equidistant intervals, resulting in 40 degrees of freedom. We test Algo-
rithm 2 using an initial set of points T d,0 = {2, 4, . . . , 40}, i.e., 20 equally spaced points
over the domain T where the constraint is enforced. The problem is solved for a confidence
δ = 90%. The remaining parameters used to solve the approximated problems at each it-
eration are ε0(t) = 0. The algorithm is implemented in the open-source Python package
doepy1(Olofsson et al., 2020).

We compare the solution computed by Algorithm 2 to three alternative strategies:

1. Fixed number of time points where the constraint is enforced without updating β(t)
and T d, and without restriction. We test 20 and 40 equally spaces discrete points,
that we call 1NLP20 and 1NLP40 respectively.

2. 1SIP: Enforcing the approximated constraint over the whole domain, i.e., the approx-
imated path constraint (Eq. (5)) is guaranteed to be respected for all t ∈ T . However,
β is not updated and the restriction is 0. The algorithm of Schultz et al. (2020b) is
employed to enforce the constraint over the whole domain.

3. Fixed number of points along the time where the constraint is enforced with adaptive
restriction. We solve a sequence of NLP where the constraint is enforced on a fixed
number of discrete points of the domain and a restriction is imposed on each constraint.
We use 20 and 40 equally spaced discrete points, that we call nNLP20 and nNLP40,
respectively. In the first run, the restriction is zero. For each solution of the NLP the
probability of violation is calculated using Algorithm 1, and we increase the restriction
when the solution is not a feasible point of the DOP.

We compare our proposed algorithm to the above strategies to demonstrate the impor-
tance of using different update strategies to find a feasible solution of the DOP. The first two
alternatives show that increasing the number of points where the approximated constraint
is enforced, or even enforcing the approximated constraint over the whole domain, is not
sufficient to enforce the path chance constraint for nonlinear systems. The third strategy

1https://github.com/scwolof/doepy
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has been employed by different authors (e.g. Srinivasan et al. (2003); Telen et al. (2015);
Shi et al. (2016)) to enforce pointwise constraints. Our comparison aims to show that: (1)
using only a few pointwise constraints with an adaptive restriction may not converge to a
feasible point of the DOP, (2) using many pointwise constraints is not efficient.

Table 2 presents the case study comparison results with the objective function for the
mean value of the parameters and the probability of violation with a 90% confidence. Firstly,
we observe that solving only one SIP can significantly reduce the probability of constraint
violation when compared to solving an NLP with 20 points where the constraint is enforced.
Even when we increase the number of points from 20 to 40, the SIP provides lower probabil-
ity of violation. Additionally, enforcing 20 pointwise constrains and imposing an adaptive
restriction on each constraint still lead to path chance constraint violation. In this case, we
increased the restriction up to 0.5 (maximum value allowed in order for x2 to be positive)
and the minimum probability of violation is greater than the desired value 10%. We would
like to highlight that the goal of previous work (Srinivasan et al., 2003; Telen et al., 2015;
Shi et al., 2016) was to guarantee the satisfaction of the pointwise chance constraint and
not a path chance constraint.

Table 2: Performance (number of NLPs solved and CPU time) of the different strategies compared to
Algorithm 2, and the objective function and probability of constraint violation for each calculated optimal
point (uopt).

Method 1NLP20 1NLP40 1SIP nNLP20 nNLP40 Alg. 2
Obj. Fun. -0.785 -0.758 -0.746 -0.700 -0.683 -0.675

pi,N(uopt)(%) 51.6 27.6 23.9 32.8 8.96 9.54
ϵpi(u

opt)(%) 1.63 2.24 2.75 0.60 0.36 0.38
NLPs 1 1 2 6 21 6

CPU time(s) 1960 1220 2403 7491 8969 5103

The results show that using 40 pointwise constraints with a restriction, we can find a
solution that respects the path chance constraint. Note, however, that we do not know a
priori the number of points we need. The solution provided by Algorithm 2 satisfies the
path chance constraint with 90% confidence and it does not depend on the initial number
of points, since the algorithm iteratively adds more points. However, the solution seems to
be more conservative than the solution using the adaptive restriction and 40 equally spaced
pointwise constraints. We see that the objective function is worse than the one obtained by
nNLP40. The possible reasons for this are the convergence to different local minima since
we employed local NLP solvers, or too conservative tuning parameters of Algorithm 2. On
the other hand, Algorithm 2 is more efficient for this case study when compared to nNLP20
and nNLP40, both approaches that also change the restriction along the iterations. It needs
to solve only a few NLPs with smaller CPU time.

We also compute the path constraint for all 6 solutions for 100 random parameter sets
(the same for all control strategies). The constraint is given by x2 − 0.5 < 0, thus we show
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the curves of x2 in Fig. 1 that must be below 0.5. We highlight that the graphs have the same
limits in order to make easier to compare the results for the different controls. However, it
may give the impression that most of the curves are above the 0.5 threshold. To demonstrate
that this is not actually the case, we present in Figure 2 a zoomed-in graph for the controls
nNLP40 and Algorithm 2 (the controls with lower probability of constraint violation), where
the reader can clearly see that most of the curves do not violate the constraint. Note that
the nNLP40 and Algorithm 2 solutions provide similar results regarding constraint violation.
Based on the probability of constraint violation the reader can observe that Algorithm 2
provides a more conservative solution. If a less conservative policy is desired, the user can
increase ξ. The optimal controls obtained for each approach are shown in Fig. 3, where
we see that using 20 discrete constraints (1NLP20 and nNLP20) results in an oscillatory
behavior. The root cause for this behavior is the violation of the constraint in-between
the points where the optimizer enforces the constraint. The controls for the other four
approaches have a similar shape and do not present oscillation.

Figure 1: x2 for 100 random parameter values. Path constraint is x2 < 0.5.

Note that the robustness of a control strategy is not only evaluated based on how often
a constraint is violated, i.e., by the probability of violation, but also by the magnitude of
possible violations. Therefore, we calculate two different metrics to evaluate the criticality of
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Figure 2: Zoomed-in of x2 for nNLP40 and Alg 2 controls. Red line represents the threshold of x2.

the violations for each solution based on the curves presented in Fig. 1: the average value of
x2 when it is above its threshold 0.5, and the maximum value of x2. We present the results
in Table 3. Comparing the two strategies that provide the lowest probability of violation
(nNLP40 and Alg. 2), we observe that the maximum value of x2 is slightly higher for the
solution computed by the proposed algorithm, although the average value is lower. Based
on these results, further investigation, not covered in this work, is required to understand
how to change the objective function of the optimization problem to compute a solution
that is a good trade-off between the probability of violation and the magnitude of possible
violations.

Table 3: Magnitude of constraint violation for each solution.

Method 1NLP20 1NLP40 1SIP nNLP20 nNLP40 Alg. 2
Average value of x2 2.61 2.75 2.44 1.90 1.78 1.61

when x2 > 0.5
Maximum value

19.1 13.6 11.7 11.3 4.46 4.64
of x2

6. Conclusions

We propose an algorithm to solve dynamic optimization problems with path chance con-
straints. Unlike previous work, our proposed algorithm enforces the path chance constraint
over the whole domain and not only on pointwise constraints. In order to guarantee the
satisfaction of the chance constraints, the algorithm solves an approximated NLP and uses
Monte Carlo integration to calculate the probability of constraint violation for each NLP
solution. The approximated constraint is adapted along the iterations to better approximate
the original problem and new pointwise contraints are added. Thus, the algorithm does not
depend on the initial number of points where constraint is enforced. The algorithm termi-
nates after a finite number of iterations under mild assumptions. The main drawback of the
algorithm is the computationally expensive procedure to propagate the uncertainty through
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Figure 3: Calculated optimal controls for each solution strategy.

the dynamic system, which significantly increases the number of differential equations to
integrate over.

We demonstrate the algorithm in a simple case study, and show that the result respects
the chance constraint, but may produce in conservative solutions. Conservativeness may be
reduced, though, by using different values for the tolerance level εi and the confidence δi.
We also demonstrate that the discretization of the path constraint in pointwise constraint
with an adaptive restriction may not work if the number of discrete points is small and
fixed. Using a large number of pointwise constraints results in larger CPU times and may
require the solution of many NLPs until a DOP feasible point is found. The application of
the algorithm to more complex problems and the adaption to solve the problem quickly and
online are the subjects of potential future work.
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Appendix A. Algorithm 2 workflow
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Figure A.4: Algorithm 2 workflow.
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