000917584 001__ 917584
000917584 005__ 20240709081849.0
000917584 0247_ $$2doi$$a10.1016/j.compchemeng.2022.107745
000917584 0247_ $$2ISSN$$a0098-1354
000917584 0247_ $$2ISSN$$a1873-4375
000917584 0247_ $$2Handle$$a2128/33675
000917584 0247_ $$2WOS$$aWOS:000806393100007
000917584 037__ $$aFZJ-2023-00786
000917584 082__ $$a660
000917584 1001_ $$0P:(DE-Juel1)165324$$aLangiu, Marco$$b0$$ufzj
000917584 245__ $$aSimultaneous optimization of design and operation of an air-cooled geothermal ORC under consideration of multiple operating points
000917584 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000917584 3367_ $$2DRIVER$$aarticle
000917584 3367_ $$2DataCite$$aOutput Types/Journal article
000917584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674022681_10414
000917584 3367_ $$2BibTeX$$aARTICLE
000917584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917584 3367_ $$00$$2EndNote$$aJournal Article
000917584 520__ $$aWe simultaneously optimize both the design and operation of an air-cooled geothermal organic Rankine cycle, maximizing total annual return (TAR), while considering multiple operating scenarios based on different ambient temperatures. In order to accurately capture realistic off-design behavior of the heat exchangers and turbine, as well as for the overall system, we incorporate component models that consider performance variations with both size and operating conditions. We employ a hybrid mechanistic data-driven modeling approach, involving artificial neural networks (ANNs) as surrogate models for accurate fluid properties, as well as for intermediate expressions for which ANNs improve tractability of the optimization problem. We demonstrate the importance of considering multiple operating conditions within design problems and propose a methodology for formulating and solving such problems globally, using our open-source solver MAiNGO.
000917584 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000917584 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917584 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b1$$ufzj
000917584 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$eCorresponding author$$ufzj
000917584 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2022.107745$$gVol. 161, p. 107745 -$$p107745 -$$tComputers & chemical engineering$$v161$$x0098-1354$$y2022
000917584 8564_ $$uhttps://juser.fz-juelich.de/record/917584/files/revised.pdf$$yPublished on 2022-03-03. Available in OpenAccess from 2024-03-03.
000917584 909CO $$ooai:juser.fz-juelich.de:917584$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165324$$aForschungszentrum Jülich$$b0$$kFZJ
000917584 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165324$$aRWTH Aachen$$b0$$kRWTH
000917584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b1$$kFZJ
000917584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000917584 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000917584 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000917584 9141_ $$y2022
000917584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-13
000917584 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000917584 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000917584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2021$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000917584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000917584 920__ $$lyes
000917584 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000917584 9801_ $$aFullTexts
000917584 980__ $$ajournal
000917584 980__ $$aVDB
000917584 980__ $$aUNRESTRICTED
000917584 980__ $$aI:(DE-Juel1)IEK-10-20170217
000917584 981__ $$aI:(DE-Juel1)ICE-1-20170217