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Abstract: We simultaneously optimize both the design and operation of an air-cooled geothermal organic
Rankine cycle, maximizing total annual return (TAR), while considering multiple operating scenarios
based on different ambient temperatures. In order to accurately capture realistic off-design behavior of
the heat exchangers and turbine, as well as for the overall system, we incorporate component models that
consider performance variations with both size and operating conditions. We employ a hybrid mechanistic
data-driven modeling approach, involving artificial neural networks (ANNs) as surrogate models for
accurate fluid properties, as well as for intermediate expressions for which ANNs improve tractability of
the optimization problem. We demonstrate the importance of considering multiple operating conditions
within design problems and propose a methodology for formulating and solving such problems globally,
using our open-source solver MAiNGO.

1 Introduction

Organic Rankine cycles (ORCs) are an established
technology for the conversion of heat to electricity,
with geothermal applications constituting around
three quarters of installed ORC capacity worldwide
(Tartière and Astolfi, 2017). For a recent review
of geothermal energy systems in general see, e.g.,
Lee et al. (2019). Due to their high availability,
geothermal ORC systems can serve as a clean and
renewable base load technology with the possibility
for a high degree of autonomy (Kaplan et al., 1999;
Kyriakarakos et al., 2020), with system capacities
ranging from a few kW to several MW (Macchi and
Astolfi, 2017b; Tartière and Astolfi, 2017). For inlet
temperatures of the geothermal brine below 180 °C
ORCs are economically preferable to dry or flash
steam cycles (Nazif, 2011).

In regions where cooling water is not available,
an air-cooled condenser (ACC) is the only option
for heat rejection, making them a common choice
for geothermal applications (Macchi and Astolfi,
2017b). As the heat transfer coefficient for air
is low, large exchanger areas are needed, making
ACC costs a major fraction of overall equipment
costs (Mines and Wendt, 2013). In addition to
ACC size, ambient temperature is another factor af-
fecting cooling capacity, and parasitic losses of the
ACC, and thus overall cycle efficiency. As a result,

an optimal tradeoff between low investment costs
and low parasitic losses in different operating con-
ditions is crucial for a technically and economically
viable system.

A large body of literature exists for optimization
of ORCs in various fields of application, with focus
on many different aspects, such as

• selection of optimal working fluids (e.g. Macchi,
2013; Lampe et al., 2014; Schilling et al., 2015,
2017) or working fluid mixtures (e.g., Huster
et al., 2020b),

• turbine design (e.g., Macchi and Perdichizzi,
1981; Lazzaretto and Manente, 2014; Casartelli
et al., 2015; Meroni et al., 2016; Seta et al.,
2016) or heat exchangers (e.g., Pierobon et al.,
2013; El-Emam and Dincer, 2013; Erdogan
et al., 2017; Astolfi et al., 2017),

• superstructure optimization (e.g., Ka-
likatzarakis and Frangopoulos, 2016; Huster
et al., 2020a).

For preliminary design optimization, system op-
eration is commonly represented by a single oper-
ating point, e.g., Astolfi et al. (2014a,b) perform
thermodynamic and thermoeconomic optimizations
of an air-cooled ORC system for different cycle con-
figurations, fluids, brine temperatures but consider
a single fixed ambient temperature of 15 °C. To en-
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sure reliable performance, it is important that such
preliminary optimizations are followed by so-called
off-design analyses, where the operation under con-
ditions other than the design point is considered.
For a review considering small- to medium-scale ap-
plications see Liu et al. (2018). These off-design
analyses may again leverage optimization; often this
is done via operational optimizations which seek op-
timal operating strategies for a fixed design at dif-
ferent operating conditions. For instance, Manente
et al. (2013) investigate off-design control strategies
for an air-cooled ORC, maximizing net power for
variations of ambient and brine temperatures from
the values assumed during the design phase. How-
ever, generalizations of conclusions from such off-
design analyses to other systems must be done with
care. An example is the frequently stated observa-
tion that superheating results in reduced thermo-
dynamic performance for subcritical cycles and that
the use of a superheater is of little use or even detri-
mental (e.g., Saleh et al., 2007; Mago et al., 2008;
Astolfi et al., 2014b; Song et al., 2020). Other de-
sign assumptions or operating conditions can how-
ever yield contradicting results, e.g., Ghasemi et al.
(2013c,a) demonstrated that considering the off-
design performance for an ORC using isobutane,
superheat is valuable at high ambient temperatures.
To obtain an overall optimum for a particular sys-
tem, it is thus important to consider the effect of off-
design explicitly during the design phase. A com-
mon approach for this is to repeatedly run a simu-
lation model and select the design yielding the best
results. Calise et al. (2014) perform multiple simu-
lations of a solarthermal ORC at fixed design con-
ditions, varying geometries of the heat exchangers.
After determining the geometry that minimizes sys-
tem costs they perform a second set of simulations
to determine performance in off-design conditions.
Similarly, Gómez-Aláez et al. (2017) consider an
ORC recovering waste heat from hot flue gases of a
gas turbine in a gas pipeline recompression station.
They obtain a design point by fixing flue gas mass
flow rate and temperature to their annual mean and
maximizing net power. Subsequently they simulate
off-design behavior, keeping turbine reduced mass
flow and heat exchanger areas constant. In such
simulation-based optimization approaches, all de-
grees of freedom must be pre-specified by appropri-
ate assumptions or user inputs, hence the resulting
designs are only optimal among the finite number
of designs corresponding to the considered inputs.

An alternative approach is to let an optimiza-
tion algorithm determine the optimal values for the

degrees of freedom and other variables. For this,
several works employ two-step approaches, first op-
timizing the system at design conditions, and sub-
sequently with the obtained design at multiple off-
design conditions. To avoid selecting a design that
is suboptimal, such approaches are commonly it-
erated in different ways. Nusiaputra et al. (2014)
devise a modular ORC for operation in different
wellhead and ambient conditions and develop a con-
trol strategy under the assumption of fixed nomi-
nal net power and exergy input. In the first phase,
component sizes and a design point are calculated
based on fixed wellhead and ambient temperature.
In the second phase, turbine nozzle opening, pump
speed, and fan speed are varied for different off-
design conditions via an evolutionary algorithm.
The two phases are repeated for a grid of design
conditions and the design point yielding the best
results is selected as the optimum. The procedure
is applied to three different climate regions and spe-
cific investment costs or mean cash flow are used as
the selection criteria. Similarly, Capra and Martelli
(2015) extend their previous work (Martelli et al.,
2015) to include the consideration of part-load op-
eration during the design of an ORC for a com-
bined heat and power application. The authors
employ a sequential quadratic programming (SQP)
algorithm to optimize part-load in various operat-
ing conditions for fixed designs and a derivative-free
black-box algorithm (Martelli and Amaldi, 2014) to
search for better designs. Kalikatzarakis and Fran-
gopoulos (2016) consider an ORC recovering waste
heat at different operating conditions of a marine
diesel engine and additionally include the system
synthesis in the optimization. The optimization is
based on a genetic algorithm which switches to an
SQP algorithm when progress stagnates. Pili et al.
(2019c) consider an air-cooled ORC for waste heat
recovery from a steel billet reheating furnace with
variations in the mass flow and temperature of the
heat source, and the ambient temperature. In ad-
dition to the typical two phases of design and off-
design under quasi-steady state conditions, results
from the off-design optimizations are interpolated
and used as setpoints in a dynamic simulation con-
sidering the inertia of the heat exchangers. In this
way, a more detailed performance evaluation over
the entire operating profile becomes possible.

All of the mentioned two-phase approaches have
in common that some aspects of the system model
are kept hidden from the optimizer and are only
used for subsequent evaluation. As a consequence,
the design found by these approaches may not be
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optimal for the overall problem of design and oper-
ation. An alternative is to employ a mathematical
programming model, which incorporates both sys-
tem design and operation, and to give the optimizer
access to all model equations. An early example of
this approach is given in Yunt et al. (2008), where
the design and operation of man-portable power
generation systems is considered, and the equiva-
lence of the resulting problem structure to stochas-
tic programming problems (Birge and Louveaux,
2011; Kall and Wallace, 1994) is discussed.

The present work applies such a stochastic pro-
gramming formulation to simultaneously optimize
the design and operation of an air-cooled geother-
mal ORC. Based on flexible component models,
which incorporate the effects of size and operat-
ing condition on efficiency and cost, we formulate
and solve optimization problems that maximize ex-
pected total annualized return (TAR) for different
sets of operating scenarios, represented by one or
more ambient temperatures. Through the use of
artificial neural networks (ANNs) as surrogate mod-
els, we incorporate detailed fluid properties and
component characteristics while maintaining com-
putational tractability. In Section 2 we present the
models for the ORC system and its components,
and our approach for quickly generating ANN sur-
rogate models from data. In Section 3 we present
computational results and Section 4 concludes this
work.

2 Models and Methods
We consider the maximization of total annual re-
turn (TAR), calculated as

TAR = −(1 + Fop)Fann CI,tot + Cel P net τop. (1)

The first term corresponds to annualized capital ex-
penses, where CI,tot are the the total investment
costs and we assume an operational cost factor Fop
= 0.06, a project lifetime of 20 years and a discount
rate of 6%, resulting in an annuity factor of Fann

= 0.0871 1
a . The second term is the revenue from

electricity production with an assumed electricity
price Cel = 80 US$

MW h, the annual weighted average
power production P net and the annual operating
time τop = 8000 h

a .
The total investment costs CI,tot are

CI,tot = CI,E&D + (1 + FBOP)
∑
c∈C

CI,c (2)

where CI,E&D are investments for exploration and
development of the geothermal resource, assumed

to be 15×106 US$, C is the set of installed compo-
nents (turbines, heat exchangers, pumps, etc.) and
the coefficient FBOP = 0.3 takes into account bal-
ance of plant costs (Macchi and Astolfi, 2017b). De-
tails on the investment costs for individual compo-
nents, CI,c, will be given in the following sections.
We point out that the assumed cost data are only
given for replicability: they affect the numerical re-
sults, but not the proposed methodology, which is
the focus of this work.

For a finite set of operating scenarios Ξ, with as-
sumed relative likelihoods πξ, ξ ∈ Ξ, P net can be
expressed as

P net =
∑
ξ∈Ξ

πξ P ξ
net, (3)

where P ξ
net is the net power for steady state opera-

tion in operational scenario ξ. Note that while dy-
namic effects play a crucial role for system control,
quasi-steady state models as employed here are suf-
ficiently accurate for techno-economic optimization
as shown, e.g., by Pili et al. (2019a).

The system we consider is adapted from Ghasemi
et al. (2013a). General assumptions are:

• A constant mass flow of ṁbr = 660 kg
s of

geothermal brine (an aqueous solution of var-
ious minerals) with an initial temperature of
Tbr,i = 135 ◦C and a pressure of pbr = 897 kPa
is available.

• The minimum reinjection temperature is
Tbr,o,min = 60 ◦C and the specific heat capacity
is assumed to be constant, cp,br = 4.1 kJ

kgK .
• The cycle to be considered is subcritical, recu-

perated, and uses the dry working fluid isobu-
tane.

• Before expansion, the working fluid mass flow
is split equally between two identical groups of
turbines, recuperators and ACC banks.

• A direct ACC is employed, i.e., the working
fluid is cooled via an air flow over finned con-
denser pipes, driven by a series of fans.

• In contrast to Ghasemi et al. (2013a), we con-
sider a dedicated heat exchanger for superheat-
ing, and a single row of fans in each ACC
bank instead of three. Additionally we only
consider a single working fluid pump instead
of three parallel ones, as power consumption
of pumps – and thus their investment costs –
are minor for subcritical cycles, see e.g., Huster
et al. (2020a). Consequently modeling multi-
ple pumps is expected to have little effect on
the TAR.

3



2.1 Explicit Functions from Data via ANNs 2 MODELS AND METHODS

ECO EVA SUP
T1

T2

REC1

REC2

P

geothermal brine

isobutane

1 2 2r2r

3 4

5

6r 6

PP

PT

PT

PF

Fig. 1. Schematic of the considered ORC process. The working fluid isobutane is pressurized in a
pump (P) requiring power PP, split evenly, and preheated on the shell side of two recuperators (REC).
The two streams are again mixed and heated, evaporated, and superheated on the shell side of an
economizer (ECO), evaporator (EVA) and superheater (SUP), respectively, via geothermal brine. The
working fluid is split again and expanded in two turbines (T), each producing power PT, followed by heat
recuperation. Finally it is desuperheated and condensed back to its original state in air cooled condenser,
using electrically powered Fans (F), requiring a total power PF.

• Pressure drops for the working fluid are negli-
gible, which means there are only two pressure
levels.

The resulting system structure is depicted in
Fig. 1. With the above assumptions, the net electric
power in each operating scenario is

Pnet = 2PT − nF PF − PP, (4)

where the subscripts T, F, and P identify turbine,
ACC fans, and pump, respectively, and nF is the
total number of fans. The nominal power for each
of these components must be an upper bound to all
occurring power levels:

Pc,nom ≥ P ξ
c ∀ξ ∈ Ξ, ∀c ∈ {T, F, P} (5)

Together with these nominal values, the system de-
sign is specified via the heat exchanger geometries,
the maximum pressure, the design enthalpy drop of
the turbine and the design volumetric flow rate at
its outlet, see the top of Tab. 1. System operation
in each considered operating scenario is determined
by the low and high pressure levels p1 and p2, the
working fluid mass flow ṁ, specific enthalpies h at
states 2r and 3 (cf. Fig. 1), the brine outlet temper-
ature, the minimum temperature difference in the
ACC, the electical powers on the right-hand side of
Eq. (4), and the relative enthalpy drop of the tur-
bine as well as the relative volumetric flow rate at
its outlet, see the bottom of Tab. 1.

To describe the remaining thermodynamical
quantities of the working fluid in different states
(circled labels in Fig. 1), we use existing ANNs,
which have been trained and validated in Huster
et al. (2019). These ANNs are explicit, analyt-
ical representations of individual fluid properties,

and thus avoid the need for lookups or iterative
computations required when using database-based
property models directly. While models incorpo-
rating database-based property models typically re-
quire black-box optimization, using local or stochas-
tic global approaches, the functional form of the
ANN representations allows for their incorporation
into deterministic global optimization via our open-
source solver MAiNGO.

Some additional functional relationships are ex-
pressed via newly generated ANN surrogate models
as described in Section 2.1. This allows all model
quantities to be explicitly expressed in terms of the
variables from Tab. 1 and the ambient temperature.
In Sections 2.2–2.4 we give additional detail on the
models of the individual components.

Note that the component models are based on a
combination of existing modeling approaches from
different literature sources. While this allows for
the conceptual process design and operation stud-
ied in this work, these models should be validated
against real plant data before use in a real-world
application.

2.1 Explicit Functions from Data via
ANNs

Functional relationships between one or more input
quantities and an output quantity may be repre-
sented as artificial neural networks (ANNs). The
benefit of using ANNs as surrogate models within
global optimization is twofold:

1. They can be used as explicit alternatives to
functional relationships which are otherwise
only given implicitly, e.g., in the form of raw
data, or via functions containing iterative ele-
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Tab. 1. Design and operational variables and their lower and upper bounds. The bounds for the specific
enthalpies h2r and h3 correspond to the saturated liquid at p = p2,LB and p = p2,UB, respectively.

design variable symbol lower bound upper bound unit

inner shell diameter ECO ds,ECO 0.7 2.5 m
inner shell diameter EVA ds,EVA 0.7 2.5 m
inner shell diameter SUP ds,SUP 0.7 2.5 m
inner shell diameter REC ds,REC 0.7 2.5 m
relative tube length ECO Lt,ECO/ds,ECO 4 12 –
relative tube length EVA Lt,EVA/ds,EVA 4 12 –
relative tube length SUP Lt,SUP/ds,SUP 4 12 –
relative tube length REC Lt,REC/ds,REC 4 12 –
relative baffle spacing ECO LB,ECO/ds,ECO 0.2 1 –
relative baffle spacing SUP LB,SUP/ds,SUP 0.2 1 –
relative baffle spacing REC LB,REC/ds,REC 0.2 1 –
ACC heat transfer area AACC 1×104 1×106 m2

maximum pressure pmax 3 25 bar
nominal fan power PF,nom 37 200 kW
nominal pump power PP,nom 0.1 2 MW
nominal turbine power PT,nom 1 15 MW
design volumetric flow rate V̇T,o,d 1 50 m3

/s
design specific enthalpy drop ∆hT,d 10 65 kJ/kg
Stodola coefficient KS 0.01 0.05 m2

operational variable symbol LB UB unit

mass flow rate of isobutane ṁ 50 1500 kg/s
low pressure level p1 1.1 20 bar
high pressure level p2 3 25 bar
specific enthalpy before ECO h2r 76.105 335.50 kJ/kg
specific enthalpy after ECO h3 76.105 335.50 kJ/kg
fan power PF 0 200 kW
pump power PP 0.1 2 MW
turbine power PT 1 15 MW
relative volumetric flow rate V̇o,rel 0.2 1.2 –
relative specific enthalpy drop ∆hrel 0.2 1.2 –
Brine outlet temperature Tbr,o 333.15 403.15 K
ACC minimal temperature difference ∆Tmin,ACC 1 55 K

ments or control structures that cannot be han-
dled by global optimizers directly (e.g., Huster
et al., 2019, 2020c).

2. The propagation of tight relaxations for the
used activation functions (e.g., tanh) via Mc-
Cormick relaxations usually results in good re-
laxations for the overall functional relationship,
cf. Schweidtmann and Mitsos (2018). Fur-
thermore, these relaxations are typically much
tighter than those of alternative representa-
tions for regression models, such as polynomi-
als, see e.g., Schweidtmann et al. (2019). These
tighter relaxations generally improve conver-
gence of global optimization.

By varying the number of neurons in each layer
and their activation function, different ANN for-

mulations can be generated. The choice of the ac-
tivation is an active research topic, with common
choices being the rectified linear unit (ReLU) and
the hyperbolic tangent (tanh). While ReLU net-
works are inherently nonsmooth, they possess the
desirable property of piecewise linarity, and thus
can be cast as MILP formulations (see, e.g., Grim-
stad and Andersson, 2019; Lueg et al., 2021). How-
ever, for the present work we preferred the nonlinear
but smooth tanh activation, as we already consider
several other nonlinearities in our model. All result-
ing ANN surrogate models used in this work pro-
vide sufficient accuracy with a single hidden layer
containing up to four neurons. More detailed infor-
mation on the training is available in the supple-
mentary material.
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2.2 Pump
As noted above, the pump only has a minor effect
on both Pnet and TAR. Consequently we use a sim-
ple model with constant values for the mechanical
efficiency ηm = 0.95, and the isentropic pump effi-
ciency ηP = 0.80. With this, the electrical power
consumption of the pump is given as:

PP = ṁ
h2,is − h1

ηm ηP
(6)

For the investment costs we use the correlation
proposed by Astolfi et al. (2014b), converted from
€2014 to US$2021:

CI,P = 11 066US$

(
PP,nom

200 000W

)0.67

(7)

2.3 Turbines
As the overall mass flow rate is split equally be-
tween the turbines, we model the electrical power
produced by a single turbine as

ṁT =
ṁ

2
, (8)

PT = ṁT (h5 − h6,is) ηg ηT, (9)

with a generator efficiency of ηg = 0.95. However,
as the turbines are a major contributor to both over-
all cost and Pnet, we consider the effect of design
(i.e., turbine size) and operation (i.e., part-load) on
the turbine efficiency ηT, which can be represented
as

ηT = ηT,d(SP,VR, Tcrit) r
(
∆hrel, V̇o,rel

)
, (10)

where the subscript D refers to the design point.
Here the maximum achievable isentropic efficiency
ηT,d is a function of the turbine size parameter SP

= V̇ 0.5
o,is,d

∆h0.25
is,d

, the turbine volume ratio VR = V̇o,is,d

V̇i,d
and

the used working fluid, represented by the respec-
tive critical temperature (Macchi and Perdichizzi,
1981; da Lio et al., 2016), and the reduction coef-
ficient r is a function of the relative enthalpy drop
∆hrel and the relative volumetric flow V̇o,rel of the
turbine (Ghasemi et al., 2013a; Pili et al., 2019b):

∆hrel =
∆h

∆hd
(11)

V̇o,rel =
V̇o

V̇o,d
(12)

da Lio et al. (2016) computed ηT,d for isobutane
and several other working fluids. The resulting val-
ues show little variation for low values of VR. As
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Fig. 2. The two factors rh and rV̇ , contributing to
efficiency reduction coefficient r from Ghasemi et al.
(2013a), their surrogate models rh,ANN and rV̇,ANN,
and the resulting errors as a function of the relative
enthalpy drop ∆hrel and volumetric flow rate V̇o,rel.

in all considered optimizations of the present work
VR stayed below 4.25, we assume a fixed value of
ηT,d = 0.88, for simplicity.

Ghasemi et al. (2013a) give a correlation for r1

that is split into two separate factors, rh, and rV̇ ,
described by polynomials. In order to improve the
relaxations of these expressions, we replace the orig-
inal polynomial form with the following ANN sur-
rogate models:

rh = 0.21395

+ 0.77056 tanh(0.064155 + 1.7140∆hrel)

+ 0.10029 tanh(2.8276− 2.1628∆hrel) (13)
rV̇ = 0.70472

− 0.27582 tanh(0.39630− 3.7982 V̇o,rel)

− 0.020017 tanh(3.1786− 5.0984 V̇o,rel) (14)

The comparison with the original correlation and
the absolute error can be seen in Fig. 2.

Another important performance aspect is the re-
lationship between reduced mass flow rate ϕ, de-
fined as

ϕ =
ṁT√
ρ5 p5

, (15)

and pressure ratio

PR =
p6
p5

=
p1
p2

. (16)

For classical Rankine cycles, Stodola’s ellipse law is
commonly used to describe this relationship. De-
spite the fact that this correlation is only valid

1Note that the journal publication is missing a 0 in one of
the coefficients, the correct correlation can be found in the
preprint (Ghasemi et al., 2013b).
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Fig. 3. Comparison of Stodola’s ellipse law (nst =
∞), presenting reduced mass flow rate ϕ, limited
by the Stodola coefficient (KS), as a function of
pressure ratio (PR), and Cooke’s adaption (Cooke,
1984) for finite stage number (nst) and possibly
choked conditions (∗) for the working fluid isobu-
tane (κ = 1.08).

for an infinite number of unchoked stages (Cooke,
1984), it is frequently used for modeling ORC tur-
bines, see, e.g., Calise et al. (2014); Capra and
Martelli (2015); Mazzi et al. (2015); Pili et al.
(2017), even though ORC turbines commonly have
between one and three stages (Macchi and Astolfi,
2017b).

As cycles operating with isobutane allow for high
efficiencies at low volume ratios (see, e.g., da Lio
et al., 2016), a reasonable initial assumption for the
number of stages nst is 1, as this keeps the tur-
bine compact and thus cheap (Macchi and Astolfi,
2017a). We therefore assume a single stage tur-
bine and use a generalization of Stodola’s ellipse
law proposed by Cooke (1984). Cooke’s general-
ization accounts for choking if PR sinks below the
value corresponding to an isentropic expansion to
sonic conditions PR∗, also see Fig. 3,

PR∗ =

(
2

κ+ 1

)nst κ
κ−1

, (17)

KS =
ϕ√

1−
(

max(0,PR−PR∗)
1−PR∗

)2 , (18)

where we use a fixed isentropic expansion coefficient
for isobutane of κ = 1.08, nst is the number of tur-
bine stages, and KS is the Stodola coefficient, a de-
sign variable proportional to the flow cross-section
of the turbine.

For the cost of turbine and generator, we use a
correlation from Astolfi et al. (2014b) that takes
into account both the number of stages nst, and
the turbine size parameter SP for the costs of the
turbine, as well as the turbine power PT, for the

costs of the electrical generator. Again costs have
been converted from €2014 to US$2021:

CI,T = 972 241US$
(nst

2

)0.5( SP

0.18m

)1.1

+ 15 809US$

(
PT,nom

5MW

)0.67

(19)

Note that the problems solved in this work assume
a fixed stage number of nst = 1 for simplicity, how-
ever, the presented model can also handle higher
numbers, or even the introduction of nst as a de-
sign variable.

2.4 Heat Exchangers
We assume that the economizer (ECO), super-
heater (SUP), and recuperator (REC) are fixed
tube sheet shell & tube exchangers, while the evap-
orator (EVA) is a shell and tube reboiler, and that
heat is rejected via an air-cooled condenser (ACC).

It is common practice to model total heat transfer
coefficients UHX in off-design conditions as

UHX = UHX,d

(
ṁ

ṁd

)FU,HX

, (20)

where FU,HX is a constant, obtained from simula-
tions or measurements (see e.g., Capra and Martelli,
2015; Pili et al., 2019a). However, apart from ṁ,
UHX generally also depends on pressures, tempera-
tures, and heat exchanger geometry, which is not re-
flected in Eq. (20). Instead of Eq. (20), we therefore
use empirical correlations for the total heat transfer
coefficients UHX, which explicitly account for heat
exchanger geometries. The heat transfer area AHX
is correlated with thermal quantities via

AHX = Q̇HX U−1
HX∆T−1

ln,HXF
−1
T,HX. (21)

Here Q̇HX is the exchanged heat, ∆Tln,HX the log-
arithmic mean temperature difference, and FT,HX
a correction factor for a particular heat exchanger
HX. For UHX, the denominators of Eqs. (47), (73)
and (78) are used for the respective inverse terms in
Eq. (21). Further details on the component-specific
correlations for UHX and AHX can be found in Sec-
tions 2.4.1 and 2.4.2. In the following, we drop the
subscript HX whenever it is not necessary for clar-
ity.

The inverse of the logarithmic mean temperature
difference is a convex function of Th,i − Tc,o and
Th,o − Tc,i, and takes the form

∆T−1
ln =

ln
(

Th,i−Tc,o
Th,o−Tc,i

)
(Th,i − Tc,o)− (Th,o − Tc,i)

, (22)

7



2.4 Heat Exchangers 2 MODELS AND METHODS

where the subscripts h and c refer to the hot and
cold fluid, and i and o to the inlet and outlet, re-
spectively. Instead of directly using the right-hand
side of Eq. (22) in Eq. (21), we use an internal func-
tion, implementing ∆T−1

ln and making its convexity
visible to the optimizer, resulting in better relax-
ations (cf. Mistry and Misener, 2016; Najman and
Mitsos, 2016). The logarithmic mean temperature
difference is valid for pure cross-flow or for the case
where one fluid is isothermal, i.e., for evaporation
or condensation. For other situations a temperature
correction factor FT ≤ 1 is used to adjust the tem-
perature difference, see, e.g., Kuppan (2013); Serth
(2007).

The cost for the heat exchangers is calculated via
the established cost correlations from Turton et al.
(2018), adjusted to US$2021 via the Chemical Engi-
neering Plant Cost Index (CEPCI):

CI,HX,0 = cf(Ao,HX, FHX,1, FHX,2, FHX,3) (23)
FHX,0 = FHX,4 + FHX,5 FHX,mat FHX,p (24)

CI,HX =
CEPCI2021
CEPCI2001

CI,HX,0 FHX,0, (25)

where cf is the Guthrie cost function

cf(x, a, b, c) = 10a+b log10(x)+c log10(x)
2

, (26)

and the pressure correction factor is calculated as

p̂HX = pmax − 1 bar (27)
FHX,p = cf(p̂HX, 0.03881,−0.11272, 0.08183), (28)

except for FACC,p which is 1. The values of
the numerical coefficients FHX,i, i ∈ {1, · · ·, 5}, and
FHX,mat are given in Tab. 2. For the shell & tube
exchangers, the overall outer tube area Ao,HX corre-
sponds to the total heat exchange area AHX, while
for the ACC, the latter is larger due to the use of
finned tubing, also see Section 2.4.2. The veloci-
ties of all fluids flowing within the tubes and the
shells are limited to vmax = 3 m

s for liquids and to
vmax = 20 m

s for gases.

2.4.1 Shell & Tube Heat Exchangers

For the shell and tube type exchangers, we assume
triangular tube arrangement and fixed values for
the tube pitch Lp, outer and inner tube diameter do
and di according to Ghasemi et al. (2013a), while
the tube length Lt and baffle spacing LB are ex-
pressed via variable ratios with respect to the inner
shell diameter ds, c.f. Tab. 1. The number of tube
passes ntp is assumed to be 2 for the evaporator
and 1 for all other exchangers, resulting in FT = 1

Tab. 2. Coefficients for heat exchanger cost corre-
lations, taken from Turton et al. (2018). For ECO,
SUP, and REC, we take the coefficients for fixed-
tubesheet exchangers, and for EVA those for U-
tube exchangers. Note that the coefficients for the
kettle-reboilers which might be considered as an al-
ternative for EVA are only valid for small units up
to 100 m2. We assume all shell & tube exchangers
are manufactured from stainless steel and the ACC
from carbon steel.

ECO, SUP, REC EVA ACC

FHX,1 4.3247 4.4646 4.0336
FHX,2 −0.3030 −0.5277 0.2341
FHX,3 0.1634 0.3955 0.0497
FHX,4 1.63 1.63 0.96
FHX,5 1.66 1.66 1.21
FHX,mat 2.75 2.75 1

Tab. 3. Geometry for shell and tube type exchang-
ers. The values for ntp were assumed, the remaining
values are taken from Ghasemi et al. (2013a).

HX ntp Lp [mm] do [mm] di [mm]

EVA 2 20.64 15.88 14.23
ECO 1 20.64 15.88 14.23
SUP 1 20.64 15.88 14.23
REC 1 39.69 31.75 29.64

in all cases . The resulting geometry is summarized
in Tab. 3.

With the assumed parameters, the tube bundle
diameter dtb, tube number nt and heat exchanger
area Ao can be obtained as discussed by Kuppan
(2013):

dtb = ds −
(
0.005m +

0.012m

ds

)
(29)

nt =
1.56√

3

(
dtb − do

Lp

)2

(30)

Ao = π doLtnt (31)

Additionally, we consider the cross-sectional areas
available for tube- and shell-side flow (index t and
s, respectively):

At,cs = π
d2i
4

nt

ntp
(32)

As,cs = LB

(
ds − dtb + (dtb − do)

(
1− do

Lp

))
(33)
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2.4 Heat Exchangers 2 MODELS AND METHODS

Using these cross-sectional areas, we can express
limits on the flow velocities

V̇t,max ≤ At,cs vmax, (34)

V̇s,max ≤ As,cs vmax, (35)

where vmax is set to the limit for liquids or gases,
depending on the phase of the respective fluid.

Exchangers with Single Phase Fluids
In the economizer, superheater and recuperater
both hot and cold fluids are all single phase shell
and tube exchangers. For the hot fluid (subscript
h), which flows on the tube-side, the Gnielinski cor-
relation (Gnielinski, 1976, 1983) is used:

Ret =
4 ṁh ntp

π di nt µh
(36)

FD = (0.782 ln(Ret)− 1.51)−2 (37)

Fe = 1 +

(
di

Lt

)2/3

(38)

Nut =
FD/8 (Ret − 1000)Prh

1 + 12.7
√
FD/8

(
Pr

2/3

h − 1
) Fe (39)

αt = Nut
kh

di
(40)

Here FD is the Darcy friction factor and Fe a cor-
rection for entry effects. The fluid properties µh,
Prh, and kh are evaluated at (T, p) = (T h, ph).

For the cold fluid (subscript c) flowing on the
shell-side, we use the simplified Delaware method as
described by Kern and Kraus (1972) (also see Serth
(2007)), to describe the heat transfer coefficient:

deq =
2
√
3L2

p

πdo
− do (41)

Res =
deq ṁc

As,cs µc
(42)

FC =
1 + LB

ds

2

(
0.08Re0.6821s + 0.7Re0.1772s

)
(43)

Nus = FC Pr
1/3

c

(
µc

µc
(
Tw, pc

))0.14

(44)

αs = Nus
kc

deq
(45)

Here FC is the Colburn factor and the fluid prop-
erties µc, Prc, and kc are evaluated at (T, p) =
(T c, pc) and

Tw =
T c + T h

2
. (46)

The overall heat transfer coefficient is then given by

U−1
S&T =

do

di

1

αt
+ do

ln(do/di)

2 kt
+

1

αs
+ FR, (47)

where we use kt = 16 W
m K as the thermal con-

ductivity of the tube material (stainless steel,
Serth (2007)), and a factor for fouling resistance
of FR = 1.3 × 104 m2 K

W (Hernandez-Galan and
Plauchu, 1989).

Evaporator
For the tube side heat transfer coefficient, we again
use Eqs. (36)–(40) while for the shell side, where the
isobutane is boiled on horizontal tubes, we follow
the approach proposed in Serth (2007) and correct
a coefficient for nucleate boiling (subsctipt nb) to
account for convective effects. The resulting heat
transfer coefficient for boiling (subscript b) can then
be obtained through the following correlations:

pc,rel =
pc

pc,crit
(48)

∆Tw = Tw − Tsat (49)

Fp = 1.8 p0.17c,rel + 4 p1.2c,rel + 10 p10c,rel (50)

αnb = 1.4692× 10−15 p2.3c,crit ∆T 7/3
w F 10/3

p (51)

Fb = 1 + 0.1

(
0.90644

dtb do

L2
p

− 1

)0.75

(52)

αb = αnb Fb + 250 (53)

Eq. (51) is the Mostinski correlation for nucleate
boiling, adjusted to SI units.

The overall heat transfer coefficient is again cal-
culated via Eq. (47) with αb instead of αs. Follow-
ing Serth (2007), we use the saturation temperature
for all calculations related to ∆Tln and FT , instead
of the inlet temperature of the potentially subcooled
liquid. Note that by fixing the geometry, the work-
ing fluid at the evaporator inlet will not necessarily
be saturated when considering multiple operating
points, but instead is determined by Eq. (21). We
therefore introduce the enthalpy of the working fluid
at the outlet of the economizer as an auxiliary vari-
able, and limit its value to lie between 95%–100%
of the saturated value at the given pressure.

2.4.2 Air-Cooled Condenser (ACC)

For the ACC, we assume horizontal bundles of
finned tubes, arranged in multiple rows, again fol-
lowing Ghasemi et al. (2013a), but allowing for dif-
ferent heat exchanger areas via a variable number
of tubes nt. The resulting values for tube and fin
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. . . . . .

tf
Lf

Lp
di

do

df

ntp

√
3nt

2ntp
Lp Lt

. . . . . .

tf
Lf

Lp
di

do

df

ntp

√
3nt

2ntp
Lp Lt

Fig. 4. Assumed geometry for the ACC: Number
of tubes nt, tube passes ntp, tube length Lt, tube
pitch Lp, diameters of inner tube di, outer tube do,
and fin df, fin thickness tf, and spacing Lf. Left:
cross-section, right: side view. Note that each tube
pass corresponds to a single tube row.

dimensions and spacing are given in Tab. 4, for the
assumed geometry, see Fig. 4.

The tube number nt can then be expressed as
a linear function of the overall heat transfer area
AACC, i.e.,

nt =
AACC

Lt π

[
do +

d2f −d2o
2 +tf (df−do)

Lf+tf

]
= 0.050307AACC, (54)

where df is the fin diameter, tf the fin thickness and
Lf the fin spacing, also see Fig. 4. Note that since
nt is in the order of 1000 – 10 000, the effect of its
integrality is negligible.

For the air-side heat transfer coefficient we first
calculate the Reynolds number based on the maxi-
mum air velocity as given in Serth (2007):

Aface =

√
3nt

2ntp
LpLt (55)

vface =
ṁair

ρair(Tair,i)Aface
(56)

vair,max =
vface Lp (Lf + tf)

Lp − do − (df − do) tf
(57)

Reair =
do vair,max ρair

µair
(58)

For the calculation of the heat transfer coefficient,

we use the correlation of Ganguli et al. (1985):

Ao,rel =
Ao

AACC
(59)

Nuair = 0.38Re0.6air Pr
1/3

air A0.15
o,rel (60)

αair = Nuair
kair

do
(61)

Here AACC is the total area that is in contact with
air, including the fin surface, and ρair, µair,Prair,
and kair are evaluated at (T, p) = (T air, 1 atm).

The desuperheating (DES) and condensation
(CON) sections need to be considered separately, as
these regions may exhibit very different heat trans-
fer coefficients and temperature differences.

While in the condensing section the isobutane is
isothermal, and hence, FT,CON = 1, FT,DES needs
to be determined via an appropriate correlation. In
preliminary calculations with various ambient tem-
peratures, desuperheating occured mostly within
the first tube-row of the ACC. We therefore deter-
mine FT,DES based on the correlation of Schedwill
(1968) for a single row of finned tubes, also see Kup-
pan (2013):

eh =
T6r − Tpinch

T6r − Tair,pinch
(62)

ec =
Tair,o − Tair,pinch

T6r − Tair,pinch
(63)

FT,DES =
ec ln

(
1−eh
1−ec

)
(eh − ec) ln

(
ec
eh

ln(1− eh) + 1
) (64)

Here eh and ec are the effectiveness of the hot and
the cold stream, i.e., isobutane and air, respectively.
The temperatures Tpinch and Tair,pinch refer to the
isobutane and air temperatures at the point of min-
imal temperature difference, i.e., the beginning of
condensation. Note that Eq. (64) is indeterminate
for eh = ec as well as for

ec ≥ ec,lim = − eh

ln(1− eh)
, (65)

also see Fig. 5. These two facts complicate the use
of Eq. (64) in global optimization. We thus gen-
erate an ANN representing the inverse of FT,DES,
needed in Eq. (21). As pointed out by Ahmad et al.
(1988) and Smith (2005), both low values of FT , as
well as regions where FT has a steep slope should be
avoided, as they correspond to an excessive temper-
ature cross and the risk for larger errors in the pre-
dicted heat transfer, respectively. To achieve this,
we scale the limit in Eq. (65) by 90% and consider

10
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Tab. 4. Assumed tube and fin geometry for air cooled condenser. The number of tube passes and
tube length (=̂ 36 ft) are typical values (Serth, 2007), the remaning values are taken from Ghasemi et al.
(2013a).

ntp [–] Lt [m] Lp [mm] df [mm] do [mm] di [mm] Lf [mm] tf [mm]

4 10.97 69.85 63.5 31.75 27.53 1.9 0.41

0.0 0.2 0.4 0.6 0.8 1.0
eh

0.0
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e c

ec,lim
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Fig. 5. Left: Schedwill correlation for FT for cross-flow over a finned tube (Eq. (64)). Note that the
function is indeterminate for eh = ec as well as for ec ≥ ec,lim (Eq. (65)). Right: Error for the resulting
ANN representing inverse FT and contours for FT based on the original correlation and the fit.

only data that satisfies

ec ≤ − eh

ln(1− eh/0.9)
. (66)

The resulting ANN surrogate model takes the form

F−1
T,ANN(eh, ec) = 0.60127

− 1.9843 tanh(3.1595− 2.3103 eh − 1.6979 ec)

+ 1.9843 tanh(3.8096 + 2.0196 eh − 2.3837 ec)

− 0.22447 tanh(9.6024− 6.5102 eh − 9.3455 ec)

+ 0.61916 tanh(2.8588− 2.7623 eh − 1.2156 ec)
(67)

and has its largest error of about 1% close to the
boundary of the domain, also see Fig. 5.

For the desuperheating section, αt is calculated
using Eqs. (36), (37), (39) and (40) and FE = 1
since di << Lt. Neglecting fouling and the contact
resistance between fins and tubing, the overall co-
efficient based on AACC can then be computed as
described in Serth (2007):

Ff =
df + tf − do

2

[
1 + 0.35 ln

(
df + tf
do

)]
(68)

Fα =

√
2αair

kf tf
(69)

ηf =
tanh(Ff Fα)

Ff Fα
(70)

ηwf =
Ao,air + ηf Af

AACC
(71)

Ai,rel =
Ai

AACC
(72)

U−1
DES =

1

αt Ai,rel
+

AACC

π Lt

ln (do/di)

2 kt
+

1

αair ηwf
(73)

Here Ao,air is the outer tube area that is in direct
contact with air, i.e., excluding area in contact with
fins, Af is the total fin area, kf = 237 W

mK is the
thermal conductivity of the aluminum fins and ηwf
is the weighted fin efficiency.

In the condensation section, the local heat trans-
fer coefficient within the tubes can be described by
Shah’s correlation (Shah, 1979, 2009):
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Fx = (1− x)0.8 +
3.8x0.76(1− x)0.04

p0.38h,rel
(74)

αcon(x) = 0.023Re0.8sat Pr0.4h,sat
kh,sat

di
Fx, (75)

where x is the vapor quality. Here Resat is
calculated as in Eq. (36) with µh replaced by
µh(Th,sat, ph), and similarly Prh,sat and kh,sat are
evaluated at (T, p) = (Th,sat, ph). As proposed by
Shah, we assume a linear variation of the vapor
quality and integrate Eq. (74) to obtain an aver-
age heat transfer coefficient that may be used for
the complete condensation:

F x = 5/9 +
2.0434

p0.38h,rel
(76)

αcon = 0.023Re0.8sat Pr0.4h,sat
kh,sat

di
F x (77)

As in the desuperheating section the overall heat
transfer coefficient can be computed as:

U−1
CON =

1

αcon Ai,rel
+

AACC

π Lt

ln (do/di)

2 kt
+

1

αair ηwf
(78)

With the respective quantities for the desuperheat-
ing and condensing sections, the overall area of the
ACC must satisfy

AACC = ADES +ACON

=
(
Q̇U−1 ∆T−1

ln F−1
T

)
DES

+
(
Q̇U−1 ∆T−1

ln

)
CON

. (79)

Note that for the condensation section FT is equal
to 1 due to the isothermal phase change.

The electrical power for each fan is calculated as

PF =
∆pFV̇air

nF ηF
, (80)

where nF is the total number of fans and an over-
all efficiency of ηF = 0.7 is assumed. The neces-
sary pressure difference ∆pF, provided by the fan
is derived from the air-side pressure drop based on
correlations from Ganguli et al. (1985):

Reeff = Reair
2Lf

df − do
(81)

Fair =
Lp − df

do
(82)

FRe =
1 + 2 exp(−Fair/4)

1+Fair

0.021 + 27.2
Reeff

+ 0.29
Re0.2eff

(83)

∆pair = 2FRe ntp ρair v
2
air,max (84)

∆pF = 1.2∆pair (85)

In Eq. (85) we follow the assumption from Serth
(2007) and account for 20% of additional losses
caused by the support structure, screens, etc.

The number of fans is determined from the total
width of the ACC, see Fig. 4. Dividing this width
by two gives the width of each of the banks, and as
the fan bays are approximately square, dividing by
Lt and flooring yields the number of bays per bank.
Doubling this value gives the total number of bays
which by assumption is equal to the number of fans
nF, i.e.:

Wtot =

√
3nt

2ntp
Lp (86)

nF = 2

⌊
Wtot

2Lt

⌋
(87)

Fan costs are modeled as in Smith (2005), with costs
adjusted from US$2000 to US$2021:

CI,F = 18 991US$nF

(
PF,nom

50 kW

)0.76

(88)

3 Computational Results
We implemented the component models presented
in Section 2 and aggregated them to a system model
representing the considered ORC, using our open-
source modeling framework COMANDO (Langiu
et al., 2021). The source code is available un-
der examples\ORC_off-design in the COMANDO
repository. Based on this system model, we define
multiple optimization problems considering TAR as
the objective with operational scenarios character-
ized by different ambient temperatures, i.e., ξ =
Tamb. As in Ghasemi et al. (2013a), we consider
the ORC system to be built at a location exhibit-
ing an ambient temperature distribution as shown
in Fig. 6, with a weighted average temperature
of T amb = 15.85 ◦C (289 K). The different prob-
lems we consider are solved using our open-source
deterministic global optimization solver MAiNGO
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Fig. 6. Assumed distribution of daily ambient tem-
peratures considered for the case study, adjusted
from Ghasemi et al. (2013a). The vertical line de-
picts the weighted average of T amb = 15.85 ◦C.

(Bongartz et al., 2018) on an Intel i7-8700 CPU
(3.20 GHz) with 32 GB of RAM. Solutions to these
problems consist of optimal design decisions and
one set of optimal operational decisions for each
considered value of Tamb, according to Tab. 1.

In all performed optimizations, only a single local
solution is found during preprocessing. Note that
due to the nonconvexity, the problems may in prin-
ciple have multiple local solutions. Given the large
number of variables (19 + 12× |Ξ|), it is not possi-
ble to perform a dense search of the entire feasible
space during preprocessing, and the ten randomly
generated initial points might all converge to the
same local minimum. To obtain a global solution,
MAiNGO employs branch and bound, however, the
level of detail considered in the system model re-
sults in a large formulation (4+ 81× |Ξ| inequality,
and 11 × |Ξ| equality constraints) and as a conse-
quence, in high computational cost. In particular,
the upper bounds decrease very slowly for the con-
sidered optimizations, and the local solution from
preprocessing is never improved, even for computa-
tion times up to one day.

Note that we use a reduced-space formulation,
i.e., we directly use expressions describing inter-
mediate quantities within other expressions instead
of introducing optimization variables for them. A
typical full-space formulation would introduce vari-
ables and add corresponding equality constraints for
temperatures and enthalpies in all states, as well as
for several other intermediate quantities, required
for the calculation of component behavior. For
the present problem this would amount to about
120×|Ξ| additional variables and constraints. While
an even smaller reduced-space formulation than the
used one is possible by eliminating the auxiliary
variables AACC, pmax, PF, PF,nom, PP, PP,nom, KS,

V̇o,rel, ∆hrel, PT, and PT,nom, preliminary optimiza-
tion results indicated that this does not improve
computational time due to the resulting deteriora-
tion of relaxations.

To improve computational performance, we
scaled all variables to a unit range and investigated
different branching strategies. Compared to the de-
fault branching strategy, where all variables have
branching priority 1, giving all design variables a
higher priority of 2, 5, or 10 improves the perfor-
mance somewhat, although the difference between
choosing 5 and 10 is negligible. We found that a
much better performance can be achieved by main-
taining a priority 1 for the auxiliary variables men-
tioned above, whose value is determined by other
variables or constraints, and setting the priority of
all other variables to the heuristic value 1 + n2,
where n is the number of functions each variable
is present in.

3.1 Optimization for the average am-
bient temperature

Optimizing the system for any single ambient tem-
perature results in a design that will generally
be suboptimal, and may even be infeasible for
other temperatures. To illustrate this point, we
consider the optimization for a single operational
scenario, corresponding to the weighted average
of ambient temperatures from Fig. 6, i.e., Ξ =

{T amb}, πT amb = 1.
When fixing the optimal design decisions ob-

tained for this average ambient temperature case,
we can optimize the operational decisions for dif-
ferent ambient temperatures. For temperatures up
to 15 °C MAiNGO finds a local optimum in prepro-
cessing, and proves these local optima to be global
within few seconds of branch and bound. The re-
maining 5 temperatures (cf. Fig. 6), however, are
found to be infeasible within few seconds of branch
and bound, also see Fig. 7. This is because the orig-
inal optimization selects a design that is optimal
for the average temperature but is operated at the
boundary of the feasibility region for this temper-
ature: The fans operate at their peak power and
tube-side velocities for EVA and REC and shell-
side velocities for ECO, REC, and SUP are at their
maximum bounds for temperatures close to T amb.
As long as the brine mass flow ṁbr is fixed to its
maximum value, the states of the working fluid are
constrained to remain identical for all ambient tem-
peratures. If the velocity limits are relaxed and ṁbr
is allowed to be reduced by making it an operational
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Fig. 7. Comparison of performance for the designs
resulting from optimizations considering the aver-
age temperature only (ATD), or all 11 temperatures
from Fig. 6 (MTD). The closeup shows that around
the average temperature, the ATD slightly outper-
forms the MTD, however, running operational opti-
mizations on a finer temperature resolution (≤ 1 K)
using the average (ATO) or multiple-temperature
(MTO) design shows that the former is only fea-
sible for a subset of all considered temperatures.
When allowing for an increase in fluid speeds and
a decrease in the brine mass flow, operation can be
extended slightly (+). For ambient temperatures
above 22.4 °C operation with the ATD is infeasible.

variable, additional feasible points can be found for
higher ambient temperatures (red crosses in Fig. 7).
For ambient temperatures above 22.4 °C, however,
operational problems remain infeasible. Similarly,
optimizing the system for any other single operat-
ing scenario, results in designs that only allow for
feasible operation close to the respective tempera-
ture. For example, optimizing for the maximum ex-
pected ambient temperature results in a design that
becomes infeasible for ambient temperatures below
0 °C as Reair approaches the lower limit of the va-
lidity range for the use of the Ganguli correlation,
see Eq. (60).

3.2 Comparing results for single and
multiple operating points

The results from the previous section suggest that
we might find a more robust system design via
an optimization for a single ambient temperature
if we artificially restrict operational constraints, in
order to obtain a more conservative design that
leaves room for the necessary variations in oper-
ating points during off-design. While this may in

fact produce a design that is feasible for all ambi-
ent temperatures, it is not clear which constraints
to relax or how to balance conservatism and opti-
mality. A more straightforward approach is to di-
rectly consider multiple operating points in a single
optimization problem, e.g., as done in Yunt et al.
(2008). By assigning appropriate weights to the
objective contributions of different operational sce-
narios, the optimizer will automatically select the
design that produces the best results based on the
weighted average, also compare Fig. 7. A particu-
lar benefit of the presented model is that no explicit
characterization of design and off-design operation
is necessary. Instead, the design is automatically
adjusted by the optimizer to account for all consid-
ered operating points.

Fig. 8 shows a qualitative comparison of the op-
timal variable values resulting from optimizations
considering a single ambient temperature, each
(ST), and an optimization that considers multiple
operating points, corresponding to the 11 tempera-
tures shown in Fig. 6 (MT), each weighted by the
respective likelihood. It can be seen that some de-
sign quantities are similar or even identical for all
cases while for other quantities, very different val-
ues are optimal depending on the considered am-
bient temperature. Furthermore, while the opti-
mal design of the MT optimization is close to the
weighted average of the ST designs for most quan-
tities, the optimal value from the MT optimiza-
tion for ds,ECO is smaller and the Lt,SUP/ds,SUP
and LB,ECO/ds,ECO ratios are larger than in all ST
cases. As with the optimal designs, the ranges of
optimal operational values for the ST optimizations
vary significantly for some of the variables. The so-
lution of the MT optimization on the other hand
exhibits approximately constant values for Tamb be-
low 10 °C for all operational quantities, except for
PF and ∆Tmin,ACC.

Generally, feasibility for operational scenarios not
considered during the optimization determining the
system design cannot be guaranteed. However, for
the present case study the monotonicity of oper-
ational variable values for the MT case in Fig. 8
suggests that the MT design might be feasible for
all ambient temperatures from −10 to 40 °C. In-
deed, when fixing the design variables to the values
from the MT solution and optimizing the opera-
tional strategies for intermediate temperatures in
steps of 1 K, MAiNGO finds feasible solutions in all
cases, also see Fig. 7. This is in contrast to the op-
timal design from the ST optimization considering
only T amb (cf. Section 3.1), and demonstrates the
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3.2 Comparing results for single and multiple operating points 3 COMPUTATIONAL RESULTS
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Fig. 8. Comparison of the variable ranges for single-temperature and multiple-temperature (all) opti-
mizations, left: design, right: operation with results for single-temperature optimizations superimposed
over those for the multiple-temperature optimization. A reduction of the considered variable ranges is
proposed based on the results and indicated via hatched vertical lines (left hatch: new lower bound, right
hatch: new upper bound). Design quantities for which the overall variation is less than 1% of the original
range are considered constant, i.e., they are fixed to the value of the multiple-temperature optimization.
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Fig. 9. Comparison of the net power Pnet, total
efficiency η = Pnet/Q̇br, and TAR resulting from
single-temperature (ST) and multiple-temperature
(MT) optimizations. Solid vertical lines correspond
to weighted averages, dashed vertical lines to upper
bounds. The dashed blue line extending over the
full height corresponds to the wait-and-see bound
obtained by taking the weighted average of the ST
bounds.

robustness of the proposed approach.

3.3 Global optimization with re-
duced variable ranges

Even after 24 h of CPU time, relative gaps for the
ST optimizations are between 13 and 124 %, and
that of the MT optimization is at 121%. As a result,
it is not clear whether a significantly better design
is possible. To obtain better bounds on the optimal
objective value, we repeat the optimizations from
the previous section with the reduced ranges shown
in Fig. 8.

As before, MAiNGO does not improve the feasi-
ble point found during preprocessing for any of the
considered optimizations. The design values corre-
sponding to the best feasible point of the MT opti-
mization are given in Tab. 5. For the ST optimiza-
tions, both net power and overall efficiency increase
almost linearly with decreasing temperature until
−5 °C. In contrast, the values from the MT solu-
tion reach a plateau for temperatures below 10 °C
in both cases, and always lie below those of the ST
optimizations, see Fig. 9.

A well-known result from the literature on two-
stage stochastic programming (see, e.g., Madansky,
1960) is that the weighted average of the glob-
ally optimal objective value of so-called wait-and-
see subproblems (where it is assumed that sepa-
rate first-stage decisions may be taken for each sce-
nario) is an optimistic bound to the optimal ob-
jective value for the here-and-now problem (where

first-stage decisions need to be taken before the re-
alization of uncertain parameters). In the context
of the present work, the first-stage decisions are
design decisions, the wait-and-see problems corre-
spond to the ST design problems and the here-and-
now problem corresponds to the MT problem. In
lack of a globally optimal objective value, the upper
bounds on the ST problems can be used to obtain
the wait-and-see bound. In the following we show
that within the same time-frame, this wait-and-see
bound can be much tighter than the upper bound
from the MT optimization.

After 24 h, the upper bound for the TAR obtained
from the direct optimization of the MT problem
(dashed orange line in the right plot in Fig. 9) is
still 93% larger than the value for the best solution
with a TAR of 7.81×106 US$

a (solid orange line in
the right plot in Fig. 9). In contrast, the bound ob-
tained by taking the weighted average of the upper
bounds from the ST optimizations (dashed blue line
in the right plot in Fig. 9) is only 11% larger than
the best found TAR. Note that while multiple ST
optimizations are necessary to generate this wait-
and-see bound, it does not necessarily take more
time than generating the direct bound from the MT
problem, as the ST problems (and the MT problem)
may be solved in parallel on separate CPUs.

The solid blue vertical line in the right plot in
Fig. 9 corresponds to the lowest possible bound we
can hope to obtain using the wait-and-see approach.
It would be obtained, if the bounds of the subprob-
lems converged to the respective objective values
of the best feasible solutions. Unlike the MT op-
timization, the wait-and-see-approach is therefore
not guaranteed to converge. If no better feasible
point is found, the best possible wait-and-see bound
would result in a gap of 7%. It is however possible
to improve the wait-and-see approach via a decom-
position algorithm as has been done by, e.g., Cao
and Zavala (2019).

4 Conclusion

We present a detailed model of an air-cooled
geothermal ORC, simultaneously taking into ac-
count system design as well as operational deci-
sions for multiple operational scenarios. Through
the incorporation of ANNs as data-driven surrogate
models, accurate working fluid properties as well
as component characteristics are incorporated while
maintaining computational tractability. We imple-
ment this model using our open-source modeling
framework COMANDO and formulate a mathemat-
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NOMENCLATURE Nomenclature

Tab. 5. Numerical results from the MT optimiza-
tion. Top: geometry of the shell and tube exchang-
ers, middle: remaining design variables, bottom:
TAR and bounds (in million US$

a ). Note that baffle
spacing for the evaporator is missing as it does not
occur in the considered correlations.

HX ds,HX [m] Lt,HX
ds,HX

[ – ] LB,HX
ds,HX

[ – ]

ECO 1.43 12 0.4765
EVA 1.285 12 –
REC 1.959 4 0.3159
SUP 1.366 4 1

AACC Pc,nom [MW] V̇T,o,d ∆hT,d KS

[m2] F P T
[
m3

s

] [
kJ
kg

]
[cm2]

1×106 0.037 1.28 12.44 24.13 62.66 20.83

TAR wait-and-see bound direct bound

7.81 8.70 15.1

ical programming problem, maximizing total annu-
alized revenue. We solve several instances of this
problem for different sets of operating scenarios,
corresponding to single or multiple ambient tem-
peratures using our open-source global optimization
solver MAiNGO. If only a single temperature is con-
sidered, e.g., the average or maximum ambient tem-
perature, we obtain a system design that enables
optimal operation for that temperature, but be-
comes infeasible for temperatures that are far from
the considered one. In contrast, considering multi-
ple operating points along with their relative like-
lihood during the optimization results in a robust
design that can be operated over the entire oper-
ating range and allows for an operation providing
maximum expected total annualized revenue.

Our contribution is twofold: first, we demon-
strate the importance of considering multiple op-
erating points within design problems, instead
of a single one. Second, we show that single-
temperature optimizations can still provide valu-
able bounding information that can be used
to improve the bound obtained from multiple-
temperature optimization. For the present case
study, we are able to reduce the upper bound on
the total annualized return from 93% to 11%.

For improved computational efficiency, algo-
rithms exploiting the special structure of simultane-

ous design and operation problems may also be em-
ployed, which is a topic for future research. Further
research may relax simplifying assumptions made
here, e.g., the restriction to a single stage turbine,
or the neglection of pressure drops. Finally, con-
sidering the influence of additional variable opera-
tional quantities, e.g., the electricity price, could be
of interest.

Nomenclature
Acronyms

ACC air cooled condenser

ANN artificial neural network

BOP balance of plant

MT multiple temperature

SQP sequential quadratic programming

ST single temperature

Subscripts

0 base cost

amb ambient conditions

ann annuitiy

b boiling

B baffle

br geothermal brine

C Colburn

c cold / component

con condensation

crit critical point

cs cross-section

D Darcy

d related to design state

e entry

el electricity

F fan

f fin

h hot
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HX related to a heat exchanger

I investment cost

i inside, related to inlet state

ib isobutane

is related to isentropic outlet

m mechanical

nb nucleate boiling

op operational

o outside, related to outlet state

p tube pitch

pinch ACC pinch point (start of condensation)

R fouling resistance

rel relative to design value

sat value at saturation

S&T shell and tube

t tube

tb tube-bundle

tp tube passes

w wall

wf weighted fin

Symbols

λ heat conductivity [W/m/K]

α fluid heat transfer coefficient [W/m2/K]

η efficiency [–]

A area [m2]

C cost [US$]

k thermal conductivity [W/m/K]

cp mass-specific heat capacity [J/kg/K]

d diameter [m]

e temperature effectiveness [–]

F correction factor [–]

h specific enthalpy [J/kg]

KS coefficient from Stodols’s ellipse law [m2]

L length [m]

ṁ mass flow rate [kg/s]

Nu Nusselt number [–]

P electrical power [W]

p pressure [Pa]

PR pressure ratio [–]

Pr Prandtl number [–]

Q̇ heat flow rate [W]

r reduction coefficient for off-design according
to Ghasemi et al. (2013a) η

ηT,d
[–]

Re Reynolds number [–]

Ξ set of operational scenarios

ξ operational scenario

SP turbine size parameter V̇ 0.5
o,is,d

∆h0.25
is,d

[m]

T temperature [K]

t thickness [m]

TAR total annual return [US$/a]

U overall heat transfer coefficient [W/m2/K]

V̇ volumetric flow rate [m3/s]

v velocity [m/s]

µ kinematic viscosity [m/s2]

VR turbine volume ratio V̇o,is,d

V̇i,d
[–]

x vapor quality [–]
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