001     9176
005     20200423202714.0
024 7 _ |a 10.1063/1.3367752
|2 DOI
024 7 _ |a WOS:000276077200045
|2 WOS
024 7 _ |a 2128/17279
|2 Handle
037 _ _ |a PreJuSER-9176
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Nauenheim, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61380
245 _ _ |a Investigation of the electroforming process in resistively switching TiO_2 nanocrosspoint junctions
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2010
300 _ _ |a 122902
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|y 12
|v 96
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We report on the electroforming in resistively switching nanocrosspoint devices made of a reactively sputtered TiO2 thin film between Pt and Ti/Pt electrodes, respectively. As most resistance switching materials, TiO2 needs to be electroformed before it can be switched. This paper presents and compares current and voltage controlled electroforming with regard to the polarity. We show that a current-driven electroforming with negative polarities leads into the switchable high resistive state without need for a current compliance. These devices show an improved stability and reliability in bipolar resistive switching performance.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a electrical conductivity transitions
653 2 0 |2 Author
|a electrical resistivity
653 2 0 |2 Author
|a electroforming
653 2 0 |2 Author
|a metal-semiconductor-metal structures
653 2 0 |2 Author
|a nanostructured materials
653 2 0 |2 Author
|a platinum
653 2 0 |2 Author
|a semiconductor thin films
653 2 0 |2 Author
|a titanium
653 2 0 |2 Author
|a titanium compounds
700 1 _ |a Kügeler, C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB15125
700 1 _ |a Rüdiger, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1063/1.3367752
|g Vol. 96, p. 122902
|p 122902
|q 96<122902
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 96
|y 2010
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.3367752
856 4 _ |u https://juser.fz-juelich.de/record/9176/files/1.3367752.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9176/files/1.3367752.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9176/files/1.3367752.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9176/files/1.3367752.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9176/files/1.3367752.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9176
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)118642
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21