000917602 001__ 917602
000917602 005__ 20240226075456.0
000917602 0247_ $$2doi$$a10.1002/adma.202209798
000917602 0247_ $$2ISSN$$a0935-9648
000917602 0247_ $$2ISSN$$a1521-4095
000917602 0247_ $$2Handle$$a2128/34415
000917602 0247_ $$2pmid$$a36573473
000917602 0247_ $$2WOS$$aWOS:000950425900001
000917602 037__ $$aFZJ-2023-00797
000917602 041__ $$aEnglish
000917602 082__ $$a660
000917602 1001_ $$0P:(DE-Juel1)189038$$aLi, Long$$b0
000917602 245__ $$aTransformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet
000917602 260__ $$aWeinheim$$bWiley-VCH$$c2022
000917602 3367_ $$2DRIVER$$aarticle
000917602 3367_ $$2DataCite$$aOutput Types/Journal article
000917602 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684222219_1638
000917602 3367_ $$2BibTeX$$aARTICLE
000917602 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917602 3367_ $$00$$2EndNote$$aJournal Article
000917602 520__ $$aTopological spin textures are of great interest for both fundamental physics and applications in spintronics. The Dzyaloshinskii–Moriya interaction underpins the formation of single-twisted magnetic solitons or multi-twisted magnetic skyrmions in magnetic materials with different crystallographic symmetries. However, topological transitions between these two kinds of topological objects have not been verified experimentally. Here, the direct observation of transformations from a chiral soliton lattice (CSL) to magnetic skyrmions in a nanostripe of the monoaxial chiral magnet CrNb3S6 using Lorentz transmission electron microscopy is reported. In the presence of an external magnetic field, helical spin structures first transform into CSLs and then evolve into isolated elongated magnetic skyrmions. The detailed spin textures of the elongated magnetic skyrmions are resolved using off-axis electron holography and are shown to comprise two merons, which enclose their ends and have unit total topological charge. Magnetic dipolar interactions are shown to play a key role in the magnetic soliton–skyrmion transformation, which depends sensitively on nanostripe width. The findings here, which are consistent with micromagnetic simulations, enrich the family of topological magnetic states and their transitions and promise to further stimulate the exploration of their emergent electromagnetic properties.
000917602 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000917602 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
000917602 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917602 7001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b1$$eCorresponding author
000917602 7001_ $$0P:(DE-HGF)0$$aWang, Weiwei$$b2
000917602 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b3$$ufzj
000917602 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b4$$ufzj
000917602 7001_ $$0P:(DE-HGF)0$$aTian, Mingliang$$b5
000917602 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b6$$ufzj
000917602 7001_ $$0P:(DE-HGF)0$$aDu, Haifeng$$b7
000917602 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202209798$$gp. 2209798 -$$n16$$p2209798 -$$tAdvanced materials$$v35$$x0935-9648$$y2022
000917602 8564_ $$uhttps://juser.fz-juelich.de/record/917602/files/Advanced%20Materials%20-%202022%20-%20Li%20-%20Transformation%20from%20Magnetic%20Soliton%20to%20Skyrmion%20in%20a%20Monoaxial%20Chiral%20Magnet.pdf
000917602 8564_ $$uhttps://juser.fz-juelich.de/record/917602/files/Transformation%20from%20magnetic...pdf$$yPublished on 2022-12-27. Available in OpenAccess from 2023-12-27.
000917602 909CO $$ooai:juser.fz-juelich.de:917602$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000917602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b3$$kFZJ
000917602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b4$$kFZJ
000917602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000917602 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000917602 9141_ $$y2023
000917602 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000917602 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bADV MATER : 2021$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger
000917602 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2021$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000917602 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000917602 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000917602 920__ $$lyes
000917602 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000917602 980__ $$ajournal
000917602 980__ $$aVDB
000917602 980__ $$aUNRESTRICTED
000917602 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000917602 9801_ $$aFullTexts