Home > Publications database > Data-Driven Nonlinear Model Reduction Using Koopman Theory: Integrated Control Form and NMPC Case Study > print |
001 | 917604 | ||
005 | 20240712112858.0 | ||
024 | 7 | _ | |a 10.1109/LCSYS.2022.3181443 |2 doi |
024 | 7 | _ | |a WOS:000814618000004 |2 WOS |
037 | _ | _ | |a FZJ-2023-00799 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Schulze, Jan C. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Data-Driven Nonlinear Model Reduction Using Koopman Theory: Integrated Control Form and NMPC Case Study |
260 | _ | _ | |a New York, NY |c 2022 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674028609_12038 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We use Koopman theory for data-driven model reduction of nonlinear dynamical systems with controls. We propose generic model structures combining delay-coordinate encoding of measurements and full state decoding to integrate reduced Koopman modeling and state estimation. We present a deep-learning approach to train the proposed models. A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1109/LCSYS.2022.3181443 |g Vol. 6, p. 2978 - 2983 |0 PERI:(DE-600)2894957-2 |p 2978 - 2983 |t IEEE control systems letters |v 6 |y 2022 |x 2475-1456 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917604/files/Schulze_2022_postreferee_copyright.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:917604 |p VDB |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-10 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|