000009340 001__ 9340
000009340 005__ 20200423202720.0
000009340 0247_ $$2pmid$$apmid:20299442
000009340 0247_ $$2pmc$$apmc:PMC2852670
000009340 0247_ $$2DOI$$a10.1093/jxb/erq049
000009340 0247_ $$2WOS$$aWOS:000276735300016
000009340 0247_ $$2Handle$$a2128/8596
000009340 0247_ $$2altmetric$$aaltmetric:21803884
000009340 037__ $$aPreJuSER-9340
000009340 041__ $$aeng
000009340 082__ $$a580
000009340 084__ $$2WoS$$aPlant Sciences
000009340 1001_ $$0P:(DE-Juel1)VDB71978$$aPoiré, R.$$b0$$uFZJ
000009340 245__ $$aDiel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects
000009340 260__ $$aOxford$$bUniv. Press$$c2010
000009340 300__ $$a1751 - 1759
000009340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009340 3367_ $$2DataCite$$aOutput Types/Journal article
000009340 3367_ $$00$$2EndNote$$aJournal Article
000009340 3367_ $$2BibTeX$$aARTICLE
000009340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009340 3367_ $$2DRIVER$$aarticle
000009340 440_0 $$03318$$aJournal of Experimental Botany$$v61$$x0022-0957$$y6
000009340 500__ $$aWe thank Beate Uhlig and B Suard for their support during the growth of the plants. We acknowledge receipt of Flaveria bidentis seeds from Robert Furbank. RP thanks the International Helmholtz Research School of Biophysics and Soft Matter for stimulating discussions, and RP and MM acknowledge the support of their PhD theses at the Heinrich-Heine-Universitat Dusseldorf.
000009340 520__ $$aDiel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.
000009340 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000009340 588__ $$aDataset connected to Web of Science, Pubmed
000009340 650_2 $$2MeSH$$aAngiosperms: growth & development
000009340 650_2 $$2MeSH$$aAngiosperms: metabolism
000009340 650_2 $$2MeSH$$aAngiosperms: physiology
000009340 650_2 $$2MeSH$$aCircadian Rhythm: physiology
000009340 650_2 $$2MeSH$$aGene Expression Regulation, Plant: physiology
000009340 650_2 $$2MeSH$$aPhotosynthesis: physiology
000009340 650_2 $$2MeSH$$aPlant Leaves: growth & development
000009340 650_2 $$2MeSH$$aPlant Leaves: metabolism
000009340 650_2 $$2MeSH$$aPlant Leaves: physiology
000009340 650_2 $$2MeSH$$aTemperature
000009340 650_7 $$2WoSType$$aJ
000009340 65320 $$2Author$$aCircadian clock
000009340 65320 $$2Author$$aelongation
000009340 65320 $$2Author$$aexpansion
000009340 65320 $$2Author$$aimage analysis
000009340 65320 $$2Author$$aphotosynthesis
000009340 65320 $$2Author$$astarch
000009340 65320 $$2Author$$asucrose
000009340 7001_ $$0P:(DE-Juel1)129420$$aWiese-Klinkenberg, A.$$b1$$uFZJ
000009340 7001_ $$0P:(DE-HGF)0$$aParent, B.$$b2
000009340 7001_ $$0P:(DE-Juel1)VDB91475$$aMielewczik, M.$$b3$$uFZJ
000009340 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b4$$uFZJ
000009340 7001_ $$0P:(DE-HGF)0$$aTardieu, F.$$b5
000009340 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b6$$uFZJ
000009340 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erq049$$gVol. 61, p. 1751 - 1759$$p1751 - 1759$$q61<1751 - 1759$$tThe @journal of experimental botany$$v61$$x0022-0957$$y2010
000009340 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852670
000009340 8564_ $$uhttps://juser.fz-juelich.de/record/9340/files/FZJ-9340.pdf$$yOpenAccess$$zPublished final document.
000009340 8564_ $$uhttps://juser.fz-juelich.de/record/9340/files/FZJ-9340.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000009340 8564_ $$uhttps://juser.fz-juelich.de/record/9340/files/FZJ-9340.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000009340 8564_ $$uhttps://juser.fz-juelich.de/record/9340/files/FZJ-9340.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000009340 909CO $$ooai:juser.fz-juelich.de:9340$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000009340 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000009340 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000009340 9141_ $$y2010
000009340 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009340 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess
000009340 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000009340 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000009340 970__ $$aVDB:(DE-Juel1)118985
000009340 9801_ $$aFullTexts
000009340 980__ $$aI:(DE-Juel1)IBG-2-20101118
000009340 980__ $$aFullTexts
000009340 980__ $$aConvertedRecord
000009340 980__ $$ajournal
000009340 980__ $$aI:(DE-82)080011_20140620
000009340 980__ $$aVDB
000009340 980__ $$aUNRESTRICTED
000009340 981__ $$aI:(DE-Juel1)IBG-2-20101118
000009340 981__ $$aI:(DE-Juel1)VDB1047