000009355 001__ 9355
000009355 005__ 20250129094246.0
000009355 0247_ $$2DOI$$a10.1103/PhysRevB.81.104423
000009355 0247_ $$2WOS$$aWOS:000276248700085
000009355 0247_ $$2MLZ$$aDhimanDMSKR2010
000009355 0247_ $$2Handle$$a2128/10990
000009355 037__ $$aPreJuSER-9355
000009355 041__ $$aeng
000009355 082__ $$a530
000009355 084__ $$2WoS$$aPhysics, Condensed Matter
000009355 1001_ $$0P:(DE-HGF)0$$aDhiman, I.$$b0
000009355 245__ $$aDiffuse neutron scattering study of magnetic correlations in half-doped La0.5Ca0.5-xSr x MnO3 (x = 0.1, 0.3 annd 0.4)
000009355 260__ $$aCollege Park, Md.$$bAPS$$c2010
000009355 300__ $$a104423
000009355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009355 3367_ $$2DataCite$$aOutput Types/Journal article
000009355 3367_ $$00$$2EndNote$$aJournal Article
000009355 3367_ $$2BibTeX$$aARTICLE
000009355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009355 3367_ $$2DRIVER$$aarticle
000009355 440_0 $$04919$$aPhysical Review B$$v81$$x1098-0121$$y10
000009355 500__ $$aRecord converted from VDB: 12.11.2012
000009355 520__ $$aThe short-range-ordered magnetic correlations have been studied in half-doped La0.5Ca0.5-xSrxMnO3 (x=0.1, 0.3, and 0.4) compounds by polarized neutron scattering technique. On doping Sr2+ for Ca2+ ion, these compounds with x=0.1, 0.3, and 0.4 exhibit CE-type, mixture of CE-type and A-type, and A-type antiferromagnetic ordering, respectively. Magnetic diffuse scattering is observed in all the compounds above and below their respective magnetic ordering temperatures and is attributed to magnetic polarons. The correlations are primarily ferromagnetic in nature above T-N, although a small antiferromagnetic contribution is also evident. Additionally, in samples x=0.1 and 0.3 with CE-type antiferromagnetic ordering, superlattice diffuse reflections are observed indicating correlations between magnetic polarons. On lowering temperature below T-N, the diffuse scattering corresponding to ferromagnetic correlations is suppressed and the long-range-ordered antiferromagnetic state is established. However, the short-range-ordered correlations indicated by enhanced spin-flip scattering at low Q coexist with long-range-ordered state down to 3 K. In x=0.4 sample with A-type antiferromagnetic ordering, superlattice diffuse reflections are absent. Additionally, in comparison to x=0.1 and 0.3 sample, the enhanced spin-flip scattering at low Q is reduced at 310 K, and as temperature is reduced below 200 K, it becomes negligibly low. The variation in radial correlation function, g(r) with temperature indicates rapid suppression of ferromagnetic correlations at the first nearest neighbor on approaching T-N. Sample x=0.4 exhibits growth of ferromagnetic phase at intermediate temperatures (similar to 200 K). This has been further explored using small-angle neutron scattering and neutron depolarization techniques.
000009355 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000009355 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000009355 542__ $$2Crossref$$i2010-03-30$$uhttp://link.aps.org/licenses/aps-default-license
000009355 588__ $$aDataset connected to Web of Science
000009355 650_7 $$2WoSType$$aJ
000009355 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000009355 7001_ $$0P:(DE-HGF)0$$aDas, A.$$b1
000009355 7001_ $$0P:(DE-HGF)0$$aMittal, R.$$b2
000009355 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b3$$uFZJ
000009355 7001_ $$0P:(DE-HGF)0$$aKumar, A.$$b4
000009355 7001_ $$0P:(DE-Juel1)VDB4342$$aRadulescu, A.$$b5$$uFZJ
000009355 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.81.104423$$bAmerican Physical Society (APS)$$d2010-03-30$$n10$$p104423$$tPhysical Review B$$v81$$x1098-0121$$y2010
000009355 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.81.104423$$gVol. 81, p. 104423$$n10$$p104423$$q81<104423$$tPhysical review / B$$v81$$x1098-0121$$y2010
000009355 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.81.104423
000009355 8564_ $$uhttps://juser.fz-juelich.de/record/9355/files/PhysRevB.81.104423.pdf$$yOpenAccess
000009355 8564_ $$uhttps://juser.fz-juelich.de/record/9355/files/PhysRevB.81.104423.gif?subformat=icon$$xicon$$yOpenAccess
000009355 8564_ $$uhttps://juser.fz-juelich.de/record/9355/files/PhysRevB.81.104423.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000009355 8564_ $$uhttps://juser.fz-juelich.de/record/9355/files/PhysRevB.81.104423.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000009355 8564_ $$uhttps://juser.fz-juelich.de/record/9355/files/PhysRevB.81.104423.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000009355 909CO $$ooai:juser.fz-juelich.de:9355$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000009355 9141_ $$y2010
000009355 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000009355 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000009355 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009355 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000009355 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000009355 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000009355 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000009355 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000009355 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000009355 970__ $$aVDB:(DE-Juel1)119015
000009355 9801_ $$aFullTexts
000009355 980__ $$aVDB
000009355 980__ $$aConvertedRecord
000009355 980__ $$ajournal
000009355 980__ $$aI:(DE-Juel1)PGI-4-20110106
000009355 980__ $$aI:(DE-Juel1)ICS-1-20110106
000009355 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000009355 980__ $$aUNRESTRICTED
000009355 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000009355 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000009355 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000009355 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000009355 981__ $$aI:(DE-Juel1)IBI-8-20200312
000009355 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000009355 981__ $$aI:(DE-Juel1)PGI-4-20110106
000009355 981__ $$aI:(DE-Juel1)ICS-1-20110106
000009355 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000009355 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000009355 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000009355 999C5 $$1C. N. R. Rao$$2Crossref$$9-- missing cx lookup --$$a10.1142/3605$$y1998
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.134414
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.82.403
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.2553
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.175
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.1356
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/381676a0
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.3494
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.115529
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.951
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.014437
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.100.545
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.100.564
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.3954
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1358331
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.174405
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4046
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.364576
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.134414
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.4389
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.4393
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/12/23/307
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.3015
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.094440
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.181.920
000009355 999C5 $$1J. Schweizer$$2Crossref$$oJ. Schweizer Neutron Scattering from Magnetic Materials 2006$$tNeutron Scattering from Magnetic Materials$$y2006
000009355 999C5 $$1T. Ersez$$2Crossref$$oT. Ersez 2004$$y2004
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/16/009
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(67)90273-6
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.3387
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02847303
000009355 999C5 $$1L. M. Rao$$2Crossref$$oL. M. Rao 1992$$y1992
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.59.960
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.344619
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.6074
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.3206
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(00)00857-7
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1722830
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.335129
000009355 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/386256a0