000009359 001__ 9359
000009359 005__ 20240619092056.0
000009359 0247_ $$2DOI$$a10.1016/j.micromeso.2010.02.012
000009359 0247_ $$2WOS$$aWOS:000277551300019
000009359 037__ $$aPreJuSER-9359
000009359 041__ $$aeng
000009359 082__ $$a530
000009359 084__ $$2WoS$$aChemistry, Applied
000009359 084__ $$2WoS$$aChemistry, Physical
000009359 084__ $$2WoS$$aNanoscience & Nanotechnology
000009359 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000009359 1001_ $$0P:(DE-HGF)0$$aChathoth, S.$$b0
000009359 245__ $$aDiffusion and adsorption of methane confined in nano-porous carbon aerogel: A combined quasi-elastic and small-angle neutron scattering study
000009359 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2010
000009359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009359 3367_ $$2DataCite$$aOutput Types/Journal article
000009359 3367_ $$00$$2EndNote$$aJournal Article
000009359 3367_ $$2BibTeX$$aARTICLE
000009359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009359 3367_ $$2DRIVER$$aarticle
000009359 440_0 $$011881$$aMicroporous and Mesoporous Materials$$v132$$x1387-1811$$y1
000009359 500__ $$aThe authors wish to thank G.D. Wignall for careful reading the manuscript and helpful suggestions. This Research at Oak Ridge National Laboratory's Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education.
000009359 520__ $$aThe diffusion of methane confined in nano-porous carbon aerogel with the average pore size 48 angstrom and porosity similar to 60% was investigated as a function of pressure at T = 298 K using quasi-elastic neutron scattering (QENS). The diffusivity of methane shows a clear effect of confinement: it is about two orders of magnitude lower than in bulk at the same thermodynamic conditions and is close to the diffusivity of liquid methane at 100 K (i.e. similar to 90 K below the liquid-gas critical temperature T-c approximate to 191 K). The diffusion coefficient (D) of methane initially increases with pressure by a factor of similar to 2.5 from 3.47 +/- 0.41 x 10(-10) m(2) s(-1) at 0.482 MPa to D = 8.55 +/- 0.33 x 10(-10) m(2) s(-1) at 2.75 MPa and starts to decrease at higher pressures. An explanation of the observed non-monotonic behavior of the diffusivity in the confined fluid is based on the results of small-angle neutron scattering experiments of the phase behavior of methane in a similar carbon aerogel sample. The initial increase of the diffusion coefficient with pressure is explained as due to progressive filling of bigger pores in which molecular mobility in the internal pore volume is less affected by the sluggish liquid-like molecular mobility in the adsorbed phase. Subsequent decrease of D, is associated with the effect of intermolecular collisions, which result in a lower total molecular mobility with pressure, as in the bulk state. The results are compared with the available QENS data on the methane diffusivity in zeolites, metal organic frameworks, and porous silica as well as with the molecular dynamics simulations of methane in nano-porous carbons and silica zeolites. (C) 2010 Elsevier Inc. All rights reserved.
000009359 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000009359 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000009359 588__ $$aDataset connected to Web of Science
000009359 65320 $$2Author$$aAerogel
000009359 65320 $$2Author$$aMethane
000009359 65320 $$2Author$$aDiffusivity
000009359 65320 $$2Author$$aNeutron scattering
000009359 650_7 $$2WoSType$$aJ
000009359 7001_ $$0P:(DE-HGF)0$$aMamontov, E.$$b1
000009359 7001_ $$0P:(DE-HGF)0$$aMelnichenko, Y.$$b2
000009359 7001_ $$0P:(DE-Juel1)131056$$aZamponi, M.$$b3$$uFZJ
000009359 773__ $$0PERI:(DE-600)2012505-7$$a10.1016/j.micromeso.2010.02.012$$gVol. 132$$q132$$tMicroporous and mesoporous materials$$v132$$x1387-1811$$y2010
000009359 8567_ $$uhttp://dx.doi.org/10.1016/j.micromeso.2010.02.012
000009359 909CO $$ooai:juser.fz-juelich.de:9359$$pVDB
000009359 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009359 9141_ $$y2010
000009359 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000009359 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000009359 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000009359 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x0
000009359 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x1
000009359 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000009359 970__ $$aVDB:(DE-Juel1)119019
000009359 980__ $$aVDB
000009359 980__ $$aConvertedRecord
000009359 980__ $$ajournal
000009359 980__ $$aI:(DE-Juel1)ICS-1-20110106
000009359 980__ $$aI:(DE-Juel1)PGI-4-20110106
000009359 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000009359 980__ $$aUNRESTRICTED
000009359 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000009359 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000009359 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000009359 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000009359 981__ $$aI:(DE-Juel1)IBI-8-20200312
000009359 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000009359 981__ $$aI:(DE-Juel1)ICS-1-20110106
000009359 981__ $$aI:(DE-Juel1)PGI-4-20110106
000009359 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000009359 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000009359 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128