001     9362
005     20200423202721.0
024 7 _ |2 pmid
|a pmid:20008895
024 7 _ |2 pmc
|a pmc:PMC2826648
024 7 _ |2 DOI
|a 10.1093/jxb/erp368
024 7 _ |2 WOS
|a WOS:000275567300009
024 7 _ |2 Handle
|a 2128/4393
037 _ _ |a PreJuSER-9362
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Pieruschka, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)129379
245 _ _ |a Photosynthesis in lightfleck areas of homobaric and heterobaric leaves
260 _ _ |a Oxford
|b Univ. Press
|c 2010
300 _ _ |a 1031 - 1039
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Experimental Botany
|x 0022-0957
|0 3318
|y 4
|v 61
500 _ _ |a We are indebted to Dr Shizue Matsubara for critical reading of the manuscript. This work was part of the doctoral thesis of RP at Mathematisch-Naturwissenschaftliche Fakultat, Heinrich-Heine Universitat, Dusseldorf, Germany.
520 _ _ |a Leaves within a canopy are exposed to a spatially and temporally fluctuating light environment which may cause lateral gradients in leaf internal CO(2) concentration and diffusion between shaded and illuminated areas. In previous studies it was hypothesized that lateral CO(2) diffusion may support leaf photosynthesis, but the magnitude of this effect is still not well understood. In the present study homobaric leaves of Vicia faba or heterobaric leaves of Glycine max were illuminated with lightflecks of different sizes, mimicking sunflecks. Photosynthetic properties of the lightfleck areas were assessed with combined gas exchange measurements and chlorophyll fluorescence imaging. Lateral diffusion in homobaric leaves with an interconnected intercellular air space stimulated photosynthesis and the effect was largest in small lightfleck areas, in particular when plants were under drought stress. Such effects were not observed in the heterobaric leaves with strongly compartmented intercellular gas spaces. It is concluded that lateral diffusion may significantly contribute to photosynthesis of lightfleck areas of homobaric leaves depending on lightfleck size, lateral diffusivity, and stomatal conductance. Since homobaric leaf structures have been reported for many plant species, it is hypothesized that leaf homobary may have an impact on overall plant performance under conditions with a highly heterogeneous light environment.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Carbon Dioxide: chemistry
650 _ 2 |2 MeSH
|a Carbon Dioxide: metabolism
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Kinetics
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Photosynthesis: radiation effects
650 _ 2 |2 MeSH
|a Plant Leaves: anatomy & histology
650 _ 2 |2 MeSH
|a Plant Leaves: chemistry
650 _ 2 |2 MeSH
|a Plant Leaves: metabolism
650 _ 2 |2 MeSH
|a Plant Leaves: radiation effects
650 _ 2 |2 MeSH
|a Soybeans: anatomy & histology
650 _ 2 |2 MeSH
|a Soybeans: chemistry
650 _ 2 |2 MeSH
|a Soybeans: metabolism
650 _ 2 |2 MeSH
|a Soybeans: radiation effects
650 _ 2 |2 MeSH
|a Vicia faba: anatomy & histology
650 _ 2 |2 MeSH
|a Vicia faba: chemistry
650 _ 2 |2 MeSH
|a Vicia faba: metabolism
650 _ 2 |2 MeSH
|a Vicia faba: radiation effects
650 _ 7 |0 124-38-9
|2 NLM Chemicals
|a Carbon Dioxide
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Drought stress
653 2 0 |2 Author
|a heterobaric leaves
653 2 0 |2 Author
|a homobaric leaves
653 2 0 |2 Author
|a lateral CO2 diffusion
653 2 0 |2 Author
|a photosynthesis
653 2 0 |2 Author
|a sunflecks
700 1 _ |a Chavarria-Krauser, A.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Schurr, U.
|b 2
|u FZJ
|0 P:(DE-Juel1)129402
700 1 _ |a Jahnke, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)129336
773 _ _ |a 10.1093/jxb/erp368
|g Vol. 61, p. 1031 - 1039
|p 1031 - 1039
|q 61<1031 - 1039
|0 PERI:(DE-600)1466717-4
|t The @journal of experimental botany
|v 61
|y 2010
|x 0022-0957
|n 4
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826648
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.ps.gz
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.gif?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9362/files/J.Exp.Bot._2010_61.4_1031-39.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9362
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |d 31.10.2010
|g ICG
|k ICG-3
|l Phytosphäre
|0 I:(DE-Juel1)ICG-3-20090406
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)119024
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21