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Abstract

The principle of detailed balance is the requirement that every microscopic process

in a system must be in equilibrium with its inverse process, when the system itself is

in thermodynamic equilibrium. This detailed balance principle has been of special

importance for photovoltaics, since it allows the calculation of the limiting efficiency

of a given solar cell by defining the only fundamental loss process as the radiative

recombination of electron/hole pairs followed by the emission of a photon. In equi-

librium, i.e. in the dark and without applied voltage, the absorbed and emitted

photon flux must be equal due to detailed balance. This equality determines the

radiative recombination from absorption and vice versa. While the classical theory

of photovoltaic efficiency limits by Shockley and Queisser considers only one detailed

balance pair, namely photogeneration and radiative recombination, the present work

extends the detailed balance principle to any given process in the solar cell. Apply-

ing the detailed balance principle to the whole device leads to two major results,

namely (i) a model that is compatible with the Shockley-Queisser efficiency limit for

efficient particle transport, while still being able to describe non-ideal and non-linear

solar cells, and (ii) an analytical relation between electroluminescent emission and

photovoltaic action of a diode that is applied to a variety of different solar cells.

This thesis presents several variations of a detailed balance model that are

applicable to different types of solar cells. Any typical inorganic solar cell is a

mainly bipolar device, meaning that the current is carried by electrons and holes.

The detailed balance model for pn-type and pin-type bipolar solar cells is therefore

the most basic incorporation of a detailed balance model. The only addition com-

pared to the classical diode theory or compared to standard one-dimensional device

simulators is the incorporation of photon recycling, making the model compatible

with the Shockley-Queisser limit and the classical diode theory. For organic solar

1
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cells, exciton binding energies are sufficiently high, so that purely bipolar models

are no longer applicable. Instead, excitonic transport has to be included. Thus, the

inclusion of exciton transport into the bipolar detailed balance model leads to a gen-

eralized detailed balance model that simulates solar cells with predominantly bipolar

transport, with predominantly excitonic transport and with every combination of

both. Due to low exciton diffusion lengths, organic solar cells are usually combined

with a specific device geometry, the bulk heterojunction. In a bulk heterojunction

device, the whole bulk of the absorber is made up of distributed heterojunctions,

where the exciton is transferred to a bound pair at the interface, which is then split

into free electron and hole. The assumption that exciton transport is only relevant

towards the next heterointerface allows to develop also a version of the detailed

balance model that is applicable to bulk heterojunction cells. The last variation

of the detailed balance model includes the process of impact ionisation as a means

to generate more than one exciton from a single high energy photon. The model

for multiple exciton generating absorbers identifies possible bottlenecks as well as

maximum efficiencies of future solar cells that use this concept.

Another direct consequence of the principle of detailed balance is a reciprocity

theorem between electroluminescence and solar cell quantum efficiency. The theo-

retical part of this thesis discusses the validity range of this reciprocity and checks

for each version of the model, whether the relation between electroluminescence and

quantum efficiency is still applicable. The main result shows that voltage depen-

dent carrier collection as encountered in low mobility pin-junction devices leads to

deviations from the reciprocity, while it still holds for most pn-junction solar cells.

The experimental part of this thesis uses this reciprocity theorem to better

interpret electroluminescence measurements of crystalline silicon, Cu(In,Ga)Se2 and

GaInP/GaInAs/Ge triple-junction solar cells. The investigation of crystalline sili-

con focusses on the quantification of recombination and light trapping using both

spectral as well as spatial electroluminescence measurements. Temperature depen-

dent measurements of Cu(In,Ga)Se2 devices characterize the solar cells in terms of

their compositional inhomogeneity, which would lead to inhomogeneous band gaps.

However, the electroluminescence measurements reveal that the highly efficient cells

don’t show significant lateral variations of the band gap. For multi-junction cells,

electroluminescence measurements accomplish the task of measuring the internal
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voltages of all individual subcells at a given injection current. From the internal

voltages, information on recombination and diode ideality of each individual cell is

obtained.
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Zusammenfassung

Das Prinzip der detaillierten Bilanz beschreibt die Notwendigkeit, dass jeder mi-

kroskopische Prozess in einem System im Gleichgewicht mit seinem Umkehrprozess

ist, solange sich das System selbst im thermodynamischen Gleichgewicht befindet.

Die detaillierte Bilanz zwischen Absorption eines Photons und strahlender Rekom-

bination eines Elektron/Loch-Paares ist der Ausgangspunkt für die Berechnung des

maximalen Wirkungsgrads einer Solarzelle durch Shockley und Queisser. Im thermo-

dynamischen Gleichgewicht, d.h. ohne Beleuchtung oder extern angelegte Spannung,

müssen der absorbierte und emittierte Photonenfluss aufgrund des Prinzips der de-

taillierten Bilanz identisch sein. Diese Bedingung erlaubt dann auch die Berech-

nung der strahlenden Rekombination aus der Absorption im Nichtgleichgewicht.

Während die klassische Theorie photovoltaischer Wirkungsgradgrenzen von Shock-

ley und Queisser allerdings nur ein einziges Paar von Prozessen berücksichtigt -

Photogeneration und strahlende Rekombination - erweitert die vorliegende Arbeit

das Prinzip der detaillierten Bilanz auf jeden beliebigen Prozess in der Zelle. Diese

Anwendung der detaillierten Bilanz auf das gesamte Bauelement führt zu zwei

grundlegenden Ergebnissen: (i) einem Modell, welches mit dem Shockley-Queisser

Wirkungsgradlimit kompatibel ist, das aber auch ist nicht-ideale und nicht-lineare

Solarzellen zu beschreiben und (ii) einem analytischen Zusammenhang zwischen der

Elektrolumineszenz und der photovoltaischen Quantenausbeute einer Solarzelle.

Die vorliegende Arbeit stellt mehrere Varianten eines Modells vor, die jeweils

mit dem Prinzip der detaillierten Bilanz kompatibel sind, und benützt diese Vari-

anten zur Simulation verschiedener Solarzellentypen. Jede anorganische Solarzelle

ist ein überwiegend bipolares Bauelement, in dem der Stromtransport über die Be-

wegung von Elektronen und Löchern bewerkstelligt wird. Das Modell für bipolare

pn- und pin-Übergänge ist demnach die einfachste und grundlegendste Variante

5
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eines Solarzellenmodells. Der einzige wesentliche Unterschied zu der klassischen

Diodentheorie oder auch zu typischen eindimensionalen Bauelementsimulatoren ist

die Berücksichtigung des Photon-Recyclings. Damit wird das Modell sowohl vere-

inbar mit dem Shockley-Queisser Limit als auch mit der klassischen Diodentheorie.

Die Exzitonenbindungsenergien von organischen Solarzellen sind im Gegensatz zu

denen anorganischer Solarzellen ausreichend groß, dass reine bipolare Modelle nicht

länger ausreichend sind und exzitonischer Transport mitberücksichtigt werden muss.

Die Einbindung von exzitonischem Transport in das bipolare Modell führt zu einem

verallgemeinerten Modell, welches eine Simulation von Zellen mit überwiegend bipo-

larem Transport, mit überwiegend exzitonischem Transport oder mit jeder Kombi-

nation aus diesen beiden möglich macht. Aufgrund der niedrigen Exzitonendiffu-

sionslängen werden organische Halbleiter üblicherweise mit einer speziellen Bauele-

mentgeometrie kombiniert - der bulk heterojunction. In diesem Bauelement besteht

der gesamte Absorber aus einem verteilten Heteroübergang. Das photogenerierte

Exziton wird am Heteroübergang zu einem gebundenen Elektron/Loch-Paar, welches

dann in freie Elektronen und Löcher aufgespalten wird. Die Annahme, dass Exzi-

tonentransport nur in Richtung der nächsten Grenzfläche relevant ist, ermöglicht

die Entwicklung eines Modells, das auch auf bulk heterojunction Bauelemente an-

wendbar ist. Die letzte Variante des Modells berücksichtigt zusätzlich den Effekt

der Stoßionisation, der in der Lage ist aus einem hochenergetischen Photon mehr

als ein Elektron/Loch-Paar oder Exziton zu erzeugen. Das Modell für Absorber, die

mehr als ein Exziton pro Photon erzeugen können, erlaubt sowohl die Identifikation

möglicher Problempunkte als auch die Berechnung von maximalen Wirkungsgraden

für zukünftige Solarzellenkonzepte, die dieses Konzept auszunutzen versuchen.

Eine weitere Konsequenz aus dem Prinzip der detaillierten Bilanz ist ein Rezi-

prozitätstheorem zwischen der Elektrolumineszenz und der photovoltaischen Quan-

tenausbeute. Im theoretischen Teil der Arbeit wird zunächst für die verschiede-

nen Varianten des Modells geprüft, ob das Reziprozitätstheorem gültig ist. Das

wesentliche Resultat ist dabei, dass spannungsabhängige Ladungsträgersammlung,

wie sie in pin-Solarzellen mit niedrigen Ladungsträger-Beweglichkeiten auftritt, im-

mer zu Abweichungen von der Reziprozität führen, während es für die meisten pn-

Solarzellen gültig bleibt.

Der experimentelle Teil dieser Arbeit verwendet dieses Reziprozitätstheorem,
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um damit Elektrolumineszenzmessungen an kristallinem Si, Cu(In,Ga)Se2 und Ga-

InP /GaInAs/Ge Tripelzellen besser interpretieren zu können. Im Falle des kristalli-

nen Siliziums liegt der Schwerpunkt auf der Untersuchung von Rekombination und

optischer Wegverlängerung sowohl mithilfe von spektral aufgelösten als auch ort-

saufgelösten Elektrolumineszenzmessungen. Temperaturabhängige Messungen an

Cu(In,Ga)Se2 charakterisieren die Solarzellen hinsichtlich der Inhomogenität ihrer

Zusammensetzung, die in diesem Materialsystem zu einer ungewollten lateralen In-

homogenität der Bandlücke führen kann. Die Elektrolumineszenzmessungen zeigen

jedoch, dass die hocheffizienten Zellen keinerlei signifikante laterale Variationen der

Bandlücke zeigen. Im Fall der Stapelzellen erlauben Elektrolumineszenzmessungen

den Zugang zu den internen Spannungen der Einzelzellen. Durch die Variation des

Injektionsstroms ermöglicht diese Methode die Bestimmung der Menge an nicht-

strahlender Rekombination und des Dioden-Idealitätsfaktors jeder einzelnen Zelle.
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Chapter 1

Introduction

More than fifty years after the introduction of the first photovoltaic device [1], solar

cells and solar modules contribute an increasing and more and more sizeable share

to the world’s demand for clean and renewable electrical energy. More than 90% of

the actual solar module production uses silicon-based pn-junction solar cells, i.e. the

same type as the pioneer device from 1954. Within these years, our understanding

of the device, its working principles, and its processing has obviously achieved a

high degree of maturity [2, 3]. In recent years, research has expanded [4, 5] from

pn-junction type silicon solar cells to completely different materials and working

principles of the photovoltaic device like organic [6–16] or dye sensitized [17–21] so-

lar cells. The evolutionary process of solar cell research leading to state-of-the-art

solar cells had economic success while creating a wish for revolutionary progress in

research. No longer are only those technologies pursued that seem to work nearly im-

mediately. Instead, theoretical concepts are sought after and materials and devices

are designed [22] that may provide the basis for future solar cell generations.

Initial efficiencies of many devices using new concepts are rather low, while

the number of scientific disciplines involved and the number of scientific aspects to

be considered is fairly high. Since many of the new concepts in photovoltaics use

e.g. electrolytes, semiconductor nano-particles [23–26], organic dyes [27], and/or

organic semiconductors as functional elements, the basic physics underlying light

absorption, charge separation, and energy generation differs considerably from what

is well established for classical pn-junction solar cells made from inorganic semicon-

ductors. Recently, it has been proposed [28,29] to distinguish between two different

9
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concepts of solar cells, namely the classical inorganic solar cells and the excitonic

solar cells usually made from organic absorber materials. However, since the overall

functionality in all solar cells, namely the generation of electrical power from solar

light, is identical, there should be a common theory that is valid for all devices on

a certain level of abstraction from physical details.

Obviously, the detailed balance theory of the maximum photovoltaic energy

conversion efficiency by Shockley and Queisser (SQ) [30] is an approach that accounts

for all types of (single junction) solar cells as a limiting situation. The generality

of the SQ approach results from the fact that only the detailed balance pair light

absorption and light emission is considered. This restriction implies that all details

of excitation, charge separation, and transport inside the device are neglected by

the postulate that all absorption of light leads to generation of charge carriers that,

in addition, are all collected by the electrical terminals of the device. The principle

of detailed balance then ensures that such a perfect solar cell is also a perfect light

emitting diode (LED) and the balance between light absorption and emission defines

the radiative efficiency limit. Thus, the SQ theory essentially looks at the solar cell

from the outside. This neglect of internal details makes up the elegance of the SQ

approach but, at a first glance, disconnects this theory from any model designed to

describe the internal operation of the solar cell.

This thesis uses the basic concept behind the SQ-theory - the principle of de-

tailed balance [31] - to develop a generalized model of solar cells that also includes

the internal details of energy transport via photons, excitons and free carriers. Apart

from the classical pn-junction solar cell, where collection of photogenerated minority

carriers is the main process crucial for achieving a high photocurrent, I also inves-

tigate pin junction solar cells as well as transport of electrons, holes and excitons.

The model is designed in a way that in the limit of high mobilities of carriers and

excitons and purely radiative recombination, the efficiency is always given by the

Shockley-Queisser limit. In the limit of predominantly non-radiative recombina-

tion, the model is equivalent to standard one-dimensional device simulators with

the only exception that excitons are added to the system. The range in between

these two limits, i.e. the case of low mobility solar cells close to the radiative limit,

is a situation neither covered by Shockley-Queisser [30] nor by Shockley’s diode [32]

theory and most standard device simulators. The feature required for covering the
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radiative limit of low mobility devices is the inclusion of generation terms caused

by emission of photons in the device itself - a process usually designated as photon

recycling [33]. This inclusion of photon recycling makes the model selfconsistent and

allows the calculation of both the photovoltaic characteristics of a device as well as

the light emitting characteristics.

Starting with a general introduction into the concept of detailed balance and

the Shockley-Queisser limit, chapter 2 defines several properties of an optoelec-

tronic device with a special focus on reciprocity relations [34, 35] that connect the

light absorbing with the light emitting situation for arbitrary values of the mobility.

The first incorporation of a detailed balance model is presented in chapter 3

and serves for the simulation of pn and pin-junction solar cells with purely bipolar

transport, i.e. without contributions from excitons. As an application for this

model, we calculate the efficiency limits of SiO2/Si quantum well solar cells. The

input parameter for these simulations are the result of first principles calculations of

the band structure, the density of states, the absorption coefficient and the mobility

that were carried out by project partners at the Universität Jena [36].

Chapter 4 introduces the full detailed balance model including excitonic

transport, which includes the excitonic (i.e. organic solar cells) and the bipolar

inorganic solar cells as special cases.

In addition to excitonic transport, most organic solar cells have a distinct

device geometry that is considerably different from that of inorganic solar cells. The

heterointerface seperating the exciton is distributed over the whole volume of the

absorber, which therefore consists of a blend of two materials. Chapter 5 therefore

extends the model to also cover these so called bulk heterojunction solar cells. I also

present a possibility to incorporate our model into a commercial device simulator.

The final extension of my model includes the effect of multiple exciton gen-

eration and thereby presents simulations for solar cells, which are not limited by

the Shockley-Queisser limit. Nevertheless, chapter 6 shows that the calculation of

detailed balance limits that include the internal kinetics of the charge separation

process is still possible.

The reciprocity relations connecting the light absorbing with the light emitting

situation are applied experimentally in chapter 7 to solar cells made from crystalline

silicon, Cu(In,Ga)Se2 and GaInP/GaInAs/Ge-multijunction cells.
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Chapter 2

Fundamentals

Starting with a general introduction into the concept of detailed balance and the

Shockley-Queisser limit, this chapter defines several properties of an optoelectronic

device with a special focus on reciprocity relations [34, 35] that connect the light

absorbing with the light emitting situation for arbitrary values of the mobility. In

addition I discuss the working principle of a solar cell in two rather simple environ-

ments: a discrete two state model and the one sided pn-junction.

2.1 The principle of detailed balance

A sample is said to be in thermodynamic equilibrium, when the temperature of the

sample is the same as the temperature of its environment, when there is no change

of temperature in time and when there are no external forces acting on the sample

as for instance an applied voltage or excess illumination from a light source. If a

sample is in thermal equilibrium, then all microscopic processes in the sample are

exactly compensated by their respective inverse process. This principle is known

since the first quarter of the 20th century under various names, like ”The Law of

Entire Equilibrium” [37], ”The Principle of Microscopic Reversibility” [38], ”The

Hypothesis of the Unit Mechanism” [39] and ”The Principle of Detailed Balancing”

[40].

On first sight, the detailed balance principle, as I want to call it in the re-

mainder of this thesis, may seem nearly trivial or at least an obvious prerequisite

to maintain thermal equilibrium. On second sight, one might however argue that

13
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the condition of equilibrium merely requires zero net change in time anywhere in

the system. For instance the requirement of zero net change in e.g. particle con-

centration could be realized by optical generation processes counterbalanced by e.g.

non-radiative recombination processes thereby violating the detailed balance prin-

ciple.

To definitely show the validity of the detailed balance principle, Bridgman [41]

formulated a definition that directly shows that the detailed balance is a consequence

of the second law of thermodynamics. The definition reads: ”No system in thermal

equilibrium in an environment at constant temperature spontaneously and of itself

arrives in such a condition that any of the processes taking place in the system by

which energy may be extracted, run in a preferred direction, without a compensating

reverse process.” This definition can be proven by assuming the opposite, namely

an unidirectional process. Following Bridgman’s definition, we could extract energy

from the system, let the system come to equilibrium with its surroundings again

and then repeat the process infinitely, which is obviously forbidden by the second

law of thermodynamics.

In the following, I discuss the implications of the principle of detailed balance

for the calculation of photovoltaic efficiency limits but also for any device model as

well as for the basic symmetry or reciprocity relationships in optoelectronic devices.

2.2 The Shockley-Queisser limit

To derive the maximum efficiency and the current/voltage(J/V )-curve of an ideal-

ized solar cell, only few considerations have to be made. The basic ingredients to

calculate this limit are the detailed balance principle [31] and Planck’s law [42]. The

assumptions defining a cell in the SQ-limit are perfect absorption with each photon

creating exactly one electron/hole pair, perfect collection of carriers and radiative

recombination as the only allowed recombination mechanism. The term perfect col-

lection means that every photogenerated electron travels to the collecting junction

faster than it can recombine and thus that the number of generated electron/hole

pairs equals the number of collected electron hole pairs. In an extended semicon-

ductor volume, this would require infinite carrier mobility. The only properties to

describe the idealized SQ-cell are its bandgap and its temperature. The bandgap
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Fig. 2.1: Photon flux that is (a) absorbed and (b) emitted by a solar cell with

an absorptance a(E) and a perfect collection. The scale for the photon emission

(b) depends on the applied voltage. The open circuit voltage in the SQ-limit is the

voltage where the hatched regions are equal in area.

Eg defines the threshold for absorption of light, which is assumed to be perfectly

abrupt, i.e. no light is absorbed below the bandgap and every photon is absorbed

above the bandgap. The photogenerated current density Jsc under illumination with

the photon flux φsun is therefore

Jsc = q

∞∫
0

φsun(E)a(E)dE = q

∞∫
Eg

φsun(E)dE, (2.1)

where E is the photon energy and q is the elementary charge. The absorption is

defined by the absorptance a(E), which is zero below and unity above the bandgap.

Figure 2.1a illustrates this situation. Absorptance multiplied with the spectrum

gives the photocurrent (hatched region) in the idealized cell.

In thermodynamic equilibrium, every process within the solar cell has to be in

equilibrium with its inverse process. A violation of this law - the detailed balance
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principle - would cause a net flux of energy, which contradicts the assumption of

thermodynamic equilibrium. From detailed balance of the radiative microscopic

processes follows that the macroscopically observable photon fluxes in and out of

a device are equal in equilibrium. The amount of black body radiation that is

absorbed equals the amount that is emitted if environment and device have the

same temperature. Hence, Kirchhoff’s law [43] follows, equating absorptance and

emissivity of a body as a function of energy and angle.

Planck’s law [42] allowed the description of thermal radiation emitted by a

black body with the temperature T . Non-thermal radiation, as encountered in a

semiconductor under non-equilibrium, is described with a generalization of Planck’s

law that was introduced by Würfel [44]. Non-equilibrium radiation is accounted

for by a non-zero chemical potential μγ of radiation, which is equal to the quasi-

Fermi-level splitting at the position where radiation is emitted. Würfel’s generalized

Planck law together with Kirchhoff’s law allows the calculation of the emission of

an ideal diode with flat quasi-Fermi levels. The emitted photon flux φ under the

applied bias voltage V is

φ(V,E) =
2πE2

h3c2

a(E)

[exp ((E − qV )/kT ) − 1]
, (2.2)

where h is the Planck constant, c the velocity of light in vacuum, a(E) is the absorp-

tance and emissivity of the solar cell, and kT is the thermal energy. For voltages

that are small compared with the emitted photon energies, i.e. E − qV >> kT ,

the Bose-Einstein [45, 46] term in Eq. (2.2) is well approximated by a Boltzmann

distribution and we can simplify Eq. (2.2) to

φ(V,E) = a(E)φbb exp (qV /kT ) , (2.3)

where the black body spectrum φbb is defined by

φbb =
2πE2

h3c2
exp

(
− E

kT

)
. (2.4)

The emission described by Eq. (2.2) and shown in Fig. 2.1 must be caused

by a recombination current Jrec. Since in the radiative limit, there are no other

possibilities to recombine, the whole recombination current must be Jrec = qΦ,
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where Φ denotes the integration of φ(V,E) over energy E, i.e.

Φ =

∞∫
0

φ(V,E)dE. (2.5)

In thermodynamic equilibrium, the total current must be zero. Thus, the recombi-

nation current has to be the same as the photocurrent, caused by absorption of the

black body radiation of the environment. In this situation, the net current must be

zero, i.e. J = q(Φ(V = 0) − Φ(V = 0)) = 0. Thus, the photocurrent in equilibrium

must be the same than the recombination current in equilibrium. Under applied

bias voltage in the dark and in the Boltzmann approximation, the total current is

J = qΦ(0)(exp(qV/kT ) − 1). The prefactor for the dark current is the radiative

saturation current density

J0,rad = qΦ(0) = q

∫
a (E) φbbdE. (2.6)

Under voltage bias and illumination, we have to subtract the short circuit current

density and finally get

J = J0,rad(exp(qV/kT ) − 1) − Jsc. (2.7)

The SQ-theory produces an exponential current/voltage-curve that is mathe-

matically already very close to the one of actual solar cells. Except for series- and

parallel resistances, the major differences are the inclusion of non-radiative satura-

tion current densities and of a diode quality factor nid accounting for small deviations

from the exponential slope of q/kT . The maximum attainable voltage is given by

the voltage, where the solar cell emits as many photons as it absorbs. No net energy

is transferred, no net current flows implying that the solar cell is in open circuit con-

ditions. The maximum voltage is therefore usually referred to as the open circuit

voltage, which results from Eq. (2.7) by setting the total current J = 0 and solving

for V , as

Voc = kT/q ln(Jsc/J0,rad + 1). (2.8)

The efficiency η of the solar cell follows directly from

η =
max (−JV )

Popt

=
JscVocFF

Popt

, (2.9)
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where FF is the fill factor and Popt is the optical power density of the incoming

radiation. The current is defined by Eq. (2.7). For an unconcentrated AM1.5G

spectrum [47], the maximum efficiency is around 33%. The influence of the bandgap

on efficiency is rather weak in the range 1 eV < Eg < 1.45 eV, while for higher

bandgaps the amount of unabsorbed low energy photons becomes too high. For

lower band gaps, the photocurrent increases but the lower energy per electron/hole

pair leads to a net decrease in both open circuit voltage and efficiency.

2.3 Combining transport with detailed balance

2.3.1 A two state solar cell model

The Shockley-Queisser theory only looked at the solar cell as a black box and did

not consider internal details of the photovoltaic process. In order to study the

photogeneration process more closely, I introduce the simplest possible discrete solar

cell model as depicted in Fig. 2.2. For a discrete solar cell, there are exactly two

distinct states fundamentally necessary. One state that absorbs photons and creates

electron/hole pairs and one state that collects the minority carrier, for instance the

electron.

For the absorbing state, detailed balance between absorption and radiative

recombination requires that

aν = a∗ϕ (2.10)

holds in thermodynamic equilibrium. Here ν = n/n0 is the normalized value of the

minority carrier concentration, where n is the minority carrier concentration and n0

the equilibrium concentration of minority carriers. Correspondingly, ϕ = φ/φbb is

the normalized photon flux. The rate constants for generation and recombination

are defined by a∗ and a. Since normalization is carried out versus the equilibrium

values, Eq. (2.10) reduces to

a = a∗, (2.11)

i.e. I define one constant a for the radiative coupling between photons and elec-

tron/hole pair. The Equation (2.11) is also known as van Roosbroeck-Shockley

equation [48] and is the main prerequisite for the Shockley-Queisser theory. Thus,
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Fig. 2.2: Scheme of a discrete solar cell model with the smallest possible number of

states, namely two - one for the minority carrier contact and one for the absorber.

The system is defined by the transition rates a for radiative coupling of photons and

electron/hole pairs, b for the non-radiative coupling of electron/hole pairs with the

phonon bath and c the coupling between the absorber and the contact. I assume that

the majorities are extracted with unity efficiency and thus do not have to consider

the hole contact as a separate state.

it will also be central to the derivation of all our models in the later chapters. How-

ever, photogeneration and radiative recombination is not the only pair of processes

I will discribe with detailed balance. In the same way, I define the constant b for

non-radiative coupling and the constant c for the coupling of the absorber state

with the normalized electron concentration in the contact ω. Then, the differential

equation for the normalized concentration ν of electrons in the absorber state is

∂ν

∂t
= −aν + aϕ − bν + b − cν + cω. (2.12)

Note that in thermodynamic equilibrium, i.e. when all photon and charge carrier

concentrations are one, the right hand side of Eq. (2.12) is zero. That means, as

required by the definition of thermodynamic equilibrium, no concentration changes

occur.

The boundary condition for the concentration of electrons in the contact is

given by the ideal diode law

ω = exp (qV /kT ) . (2.13)

Since both the differential equation as well as the boundary condition are defined, I

can now calculate the solution for the concentration ν in the steady state ∂ν/∂t = 0.
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If I allow for voltage and illumination bias, it follows

ν =
aϕ + b + c exp (qV /kT )

a + b + c
(2.14)

and for the normalized excess carrier concentration Δν = ν − 1

Δν =
aΔϕ + c [exp (qV /kT ) − 1]

a + b + c
, (2.15)

where Δϕ is the normalized excess photon flux. As for the derivation of the Shockley-

Queisser limit, I investigate now both the photocurrent and the recombination cur-

rent.

The recombination current follows from the concentration of minorities in the

dark, i.e. for Δϕ = 0. The normalized excess dark carrier concentration is then

Δνdark =
c

a + b + c
[exp (qV/kT ) − 1] . (2.16)

The concentration under illumination is

Δνillu =
aΔϕ

a + b + c
(2.17)

and the collection efficiency fc of electrons, which determines the photocurrent, is

fc =
cΔνillu

aΔϕ
=

c

a + b + c
. (2.18)

One sees that the collection efficiency fc, defined as the flux of electrons flowing from

our single absorber state to the contact, normalized to the excess flux of photons

being absorbed, equals the normalized dark carrier concentration Δνdark/(ω − 1).

This relation, connecting the injection of carriers in the dark to the extraction of

carriers under illumination is known as the reciprocity theorem of Donolato [34].

Just like the SQ-limit, also the Donolato theorem is a direct consequence of the

principle of detailed balance [49]. It holds not only in the simplified world of our

discrete solar cell model but also for continuous systems, with spatial variation of

all given parameters [50–52].

Having discussed the relation between photo- and recombination current, I go

one step further and discuss the case of light absorption and photocurrent generation

in our discrete solar cell with the inverse case of carrier injection and light emission.
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Let us assume that our single absorbing state has a certain distance to the

device surface. Optically relevant is the transmittance T that depends on this dis-

tance and is defined by the requirement that the absorbed photon flux af depends

on the photon flux ϕsurf impinging on the solar cell surface via

aϕ = Taϕsurf . (2.19)

Now, I define a quantum efficiency Q as the number of collected minorities (elec-

trons) per photon impinging on the surface of our device as

Q =
cν

ϕsurf

=
cν

aϕ

aϕ

ϕsurf

= fcaT. (2.20)

Turning now to the light emitting diode situation, we have to calculate the

photon flux emitted from the surface of the device caused by radiative recombination

in our single absorber state. The amount of light created by recombination follows

from the rate equation (2.12) as aν. The amount of light that is emitted by the

surface is damped by the factor T accounting for reabsorption of emitted photons.

Thus, the emission follows as

ϕem = aνT = aT
c

a + b + c
exp (qV /kT ) . (2.21)

Using fc = c/(a + b + c) and Eq. (2.20), I find that the emission relates to the

quantum efficiency as

ϕem = Q exp (qV /kT ) . (2.22)

Thus, I derived directly from the principle of detailed balance two reciprocity rela-

tions, one between the photocarrier collection and carrier injection and one between

the solar cell quantum efficiency and the electroluminescence (EL).

2.3.2 The one sided pn-junction

Having discussed the solar cell in a very abstract environment, I will have a final look

on a model of a solar cell, which is probably more familiar to the reader. I choose

the case of an abrupt one sided pn-junction, which is a decent approximation of e.g.

crystalline silicon solar cells, where the whole device consists mostly of one p-type

layer, with only a thin n+-emitter on top. This approximation has the advantage

that we again only have to consider minorities – in this case electrons.
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The detailed balance between radiative recombination and photogeneration in

terms of commonly used quantities like lifetime τ and absorption coefficient α is

given by [48]
n0

τ
= αφbb, (2.23)

where n0 is the equilibrium concentration of minorities. Note that Eq. (2.23) is

equivalent to Eq. (2.11) with the coefficient a accounting for radiative coupling

of photons and electron/hole pairs. The (energy resolved) radiative recombination

rate rrad(E) at position x follows directly from the previous Eq. (2.23) if I allow for

excess minority carriers Δn as

rrad (x,E) =
Δn (x)

τ
= αφbb

Δn (x)

n0

. (2.24)

The electroluminescent emission depends on the rate describing radiative recom-

bination and the probability fem that the created photons are not reabsorbed and

follows then from the integral

φem (x,E) =

d∫
0

rrad (x,E) fem (x) dx (2.25)

over the thickness d of the device. Although I don’t know the emission probability

fem of photons, I can derive it from Würfel’s generalized Planck’s law (Eq. (2.2)).

We know that for flat quasi-Fermi levels and thus a constant quasi-Fermi level split

ΔEF

φem =
d∫
0

αfem (x) dxφbb exp
(

ΔEF

kT

)
= a (E) φbb exp

(
ΔEF

kT

) (2.26)

holds. Since the absorptance

a (E) =

d∫
0

g (x,E) dx (2.27)

is the integral over the generation rate g, I find

αfem (x) = g (x) (2.28)

and finally the EL spectrum also for non-flat quasi-Fermi levels

φem =

d∫
0

g (x)
Δn(x)

Δnj

dxφbb exp

(
qV

kT

)
. (2.29)
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Note that the voltage V is defined as the splitting of quasi-Fermi levels at the

collecting junction for the minority carriers. Thus, the excess carrier concentration

Δnj at the junction is given by

Δnj = n0 exp (qV /kT ) . (2.30)

This Eq. (2.30) is equivalent to our definition of ω in Eq. (2.13) for the discrete

case. Note that the generation rate g(x) is defined such that it has the unit [ cm−1].

It relates to the commonly used generation rate G in [ cm−3 s−1] as G normalized to

the incoming photon flux φin, i.e. g = G/φin.

In order to show that the emission spectrum defined by Eq. (2.29) is identical

to the result obtained for the discrete model [Eq. (2.22)], I need to define the

quantum efficiency in a similar way as done in Eq. (2.20). Since the quantum

efficiency describes a series connection of photocarrier generation and collection, it

is useful to write the quantum efficiency as

Qe (E) =

d∫
0

g (x,E) fc (x) dx, (2.31)

i.e. integral over the product of two quantities: the generation rate g and the

collection efficiency fc. Thus, by application of Donolato’s theorem [34]

fc(x) =
ΔnD(x)

ΔnDj

=
ΔnD(x)

n0(x) [exp(qV/kT ) − 1]
, (2.32)

I directly obtain the reciprocity between electro-luminescent emission and photo-

voltaic quantum efficiency for the continuous case [35]

φem(E) = Qe(E)φbb(E)

[
exp

(
qV

kT

)
− 1

]
. (2.33)

2.3.3 Radiative limit for arbitrary mobilities

The Shockley-Queisser theory defines the short circuit current density

Jsc,SQ = q

∞∫
0

a(E)φsun(E)dE (2.34)
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as well as the saturation current density

J0,SQ = q

∞∫
0

a(E)φbb(E)dE (2.35)

and the open circuit voltage

Voc,SQ =
kT

q
ln

(
Jsc,SQ

J0,SQ

+ 1

)
(2.36)

only via the radiation balance. The same is possible for the radiative limit at low

mobilities. This is still given by the radiation balance, however, now the emitted

and absorbed portion of the light is given by the external quantum efficiency and

no longer by the absorptance. Thus it follows for the radiative limit of the short

circuit current density

Jsc,rad = q

∞∫
0

Qe(E)φsun(E)dE (2.37)

as well as of the saturation current density

J0,rad = q

∞∫
0

Qe(E)φbb(E)dE (2.38)

and of the open circuit voltage

Voc,rad =
kT

q
ln

(
Jsc,rad

J0,rad

+ 1

)
. (2.39)

2.4 Solar cell and light emitting diode

The fundamentals chapter started with the SQ-limit, i.e. with the perfect solar

cell. The case of perfect absorption above the band gap, infinite carrier mobilities

and suppressed non-radiative recombination is also the limiting situation for a light

emitting diode (LED). It seems that for less ideal devices, the requirements for LEDs

and solar cells differ considerably. Organic LEDs [53] for instance have very high

LED quantum efficiencies QLED ≈ 15% [54], while solar cells made from polymers

have just reached only 5% power conversion efficiency [15]. Silicon devices, however,

are among the best single junction solar cells, with efficiencies η = 24.7% [55, 56],
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however light emission from silicon is rather inefficient with highest LED quantum

efficiencies approaching QLED = 1% [57]. Thus, although the reciprocity relation

[Eq. (2.33)] suggests a strong link between the light emitting and light absorbing

situation, there seems to be no direct relationship between LED quantum efficiency

and solar cell efficiency.

However, as shown in Refs. [35,58,59], the photovoltaic quantity that actually

relates most directly to the LED quantum efficiency is the open circuit voltage Voc.

In photovoltaics, a frequently used measure for the amount of recombination is to

relate the Voc to the band gap Eg either by taking the ratio qVoc/Eg or the difference

Eg − qVoc [60]. If I instead relate the measured Voc to its radiative limit

Voc,rad = kT
q

ln
(

Jsc

J0,rad
+ 1

)
≈ kT

q
ln

(
∞∫
0

QeφsundE

/
∞∫
0

QeφbbdE

)
(2.40)

as defined by detailed balance, we see a direct correlation to the LED quantum

efficiency. The difference of limiting and real Voc gives

ΔVoc = Voc,rad − Voc = −kT

q
ln (QLED) , (2.41)

since the LED quantum efficiency QLED is defined as

QLED(V ) =
Jrad(V )

Jnr(V ) + Jrad(V )
. (2.42)

Here, Jrad denotes the radiative recombination current and Jnr the non-radiative

recombination current.

This result shows that the LED quantum efficiency and thus the amount of

additional non-radiative recombination compared to the radiative one directly cor-

relates with open circuit voltage. This provides us with the reasons for the apparent

discrepancy between the requirements for good solar cell and LED materials. A

high percentage of radiative recombination is the paramount requirement for effi-

cient LEDs, while indirect semiconductors with their very long radiative lifetimes

are not well suited for application in light emitting devices. Of course, they also

suffer from their long radiative lifetimes compared to the non-radiative ones in terms

of their Voc. However, these losses only enter the Voc and thus the efficiency logarith-

mically. For instance, a difference of radiative and non-radiative Voc of only 60 meV
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corresponds to a dramatic difference in QLED of one order of magnitude. The reason,

why organic polymers have difficulties in becoming high efficiency solar cells is their

low mobilities. Except for few special situations1, the open circuit voltage and thus

the LED quantum efficiency are independent of mobility. Thus, a low mobility is

in no way an obstacle for the use of a material as LED. However, for solar cells, a

low mobility leads to a low collection efficiency and photocurrent and thus is a big

obstacle for high efficiencies.

To illustrate these differences, a brief look at our discrete two state device

model is helpful. A low mobility is represented by a low coupling constant c of

absorber and contact in this model. The open circuit situation is reached, when no

current flows, i.e., when cν = cω. The open circuit voltage then follows from solving

this equality for V as

Voc =
kT

q
ln

(
aΔϕ

a + b
+ 1

)
(2.43)

Obviously, Voc does not depend on the coupling c to the contact but only on the

radiative coupling a and non-radiative coupling b of the electrons to the photons

and phonons. In contrast, the collection efficiency [see Eq. (2.18)] and in turn the

quantum efficiency [see Eq. (2.20)] and the photocurrent depend on c and on a

low mobility. Thus, the efficiency of a solar cell is sensitive to low mobilities via

the photocurrent, while the LED quantum efficiency is in this simple model totally

unaffected by mobilities.

2.5 Properties of optoelectronic devices - a brief

summary

Optoelectronic devices like solar cells or light emitting diodes (LEDs) are usually

characterized by their parameters like the electro-optical or opto-electrical power

conversion efficiency, being for both applications the decisive parameter. Apart

from these parameters used to quantify the quality of a device, one can also define

properties of the devices that define how they react on deviations from equilibrium.

For instance the application of an external voltage to a diode usually leads to an

1see chapter 5.3.1 for the discussion of one exception to this rule
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exponential increase in current, where the slope is determined only by the tempera-

ture. A second example is that the photocurrent is proportional to the photon flux

and independent of voltage such that dark J/V and illuminated J/V only differ

by a constant factor, the short circuit current. In the following, I will define five

properties of optoelectronic devices that are all valid for small deviations from ther-

modynamic equilibrium. In the next chapters, I will then investigate under which

circumstances these properties are still applicable to variable non-ideal solar cells.

Figure 2.3 summarizes these five properties of solar cells that hold for linear

deviations from thermodynamic equilibrium. The current/voltage curve consists of

two parts, the photocurrent caused by illumination of the sample with excess photons

and the recombination current caused by injection of carriers from the contacts

due to an applied voltage. For both, photocurrent and recombination current, I

define an ideal situation. If the photocurrent is proportional to the photon flux

and independent of voltage, the so called superposition principle holds. I define

the internal voltage Vint as the quasi-Fermi level splitting at the collecting junction.

Then the superposition principle means that the J/Vint-curve under illumination and

in the dark differ only by a constant additive term, the photogenerated current Jph,

which is then equal to the short circuit current Jsc under illumination.

What might be the reason for a violation of the superposition principle? We

already know that the quantum efficiency and thus the photocurrent depend on

generation and collection of carriers via

Jph =

∞∫
0

Qe (E) φsun(E)dE =

∞∫
0

d∫
0

g (x,E) φsunfc (x) dxdE. (2.44)

As long as we are far away from lasing conditions, the generation rate g(x) is indepen-

dent of voltage and photon flux. Thus, reasons for a violation of the superposition

principle will be found in the voltage and illumination dependence of the collection

efficiency. In general, Shockley-Read-Hall (SRH) [61, 62] or Auger recombination

statistics lead to a minority carrier lifetime that depends on the number of elec-

trons and holes in the device and thus on the voltage and illumination conditions.

However in crystalline silicon, for instance, the influence of SRH and Auger recombi-

nation on the collection efficiency is sufficiently low that the superposition principle

is hardly violated. For pin-junction solar cells, the situation is different insofar as
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Photocurrent Recombination current

J = −Jph + J0[exp(qV/nidkT ) − 1]

(i) Superposition

Jph = Jsc �= Jph(V )

Jph ∝ φ

(ii) Diode Ideality

nid = 1

J0 �= J0(V )

(iii) Donolato Reciprocity

fc = Δn(x)
Δnj

(iv) Optoelectronic Reciprocity

φem = Qeφbb[exp(qV/kT ) − 1]

QLED = exp(−qΔVoc/kT )

Kirchhoff’s law, Würfel’s law

φ = a(E)φbb exp(qV/kT )

Fig. 2.3: Summary of the properties of optoelectronic devices. Solar cells that are

well described by a linear differential equation for minority carriers such as e.g.

our two state model in chapter 2.3.1 for constant values of a, b and c, have (i) a

photocurrent independent of voltage and proportional to the excess photon flux and

(ii) a recombination current Jrec ∝ exp(qV/kT ). In addition, (iii) the Donolato

theorem is valid as well as (iv) the optoelectronic reciprocities.
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the collection efficiency depends on the built-in field under bias, which depends by

design linearly on the applied voltage.

The recombination current induced by injection of carriers at the junctions is

of course always voltage dependent. For an ideal pn-junction, where only recom-

bination of minority carriers in the neutral region takes place, the recombination

current should follow the applied voltage exponentially, while the slope is only given

by the inverse thermal voltage q/kT [32]. If the voltage dependence of the recombi-

nation current is either not exponential or has another slope than q/kT , usually one

or several diode quality factors nid are introduced. Again, we want to ask ourselves

under which circumstances the recombination current is not ∝ exp(qV/kT ).

Let us neglect the surface recombination for a moment. Then the recombina-

tion current in an abrupt one sided pn-type device is

Jrec =

d∫
0

R
ΔnD(x)

ΔnDj

dx exp(qV/kT ) = J0 exp(qV/kT ). (2.45)

The voltage dependence of the prefactor J0 may either be caused by a voltage

dependence of the recombination constant R or by a voltage dependence of the dark

carrier distribution ΔnD(x)/ΔnDj. Again, the SRH or Auger recombination statistics

makes the recombination rate depend on carrier density. This directly affects R and

indirectly also the dark carrier distribution ΔnD(x)/ΔnDj.

The superposition principle and the diode ideality are fundamentally connected

by the Donolato theorem [34]. I already introduced the link between photocarrier

collection and dark carrier injection

fc(x) =
ΔnD(x)

ΔnDj

=
ΔnD(x)

n0(x) [exp(qV/kT ) − 1]
. (2.46)

Whenever the collection efficiency becomes voltage dependent, the superposition

principle stops to hold [due to Eq. (2.44)]. If all physical quantities describing

recombination - like for instance the lifetime τ and the surface recombination ve-

locity S - only depend on voltage, the Donolato theorem will still hold. Thus the

dark carrier distribution ΔnD(x)/ΔnDj will also be voltage dependent and the diode

ideality will differ from unity. If the amount of carriers determines the value of the

recombination parameters, the Donolato theorem will stop to be valid, since e.g. the

diffusion length under illumination and in the dark will be different even when the
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voltage is the same. Thus, a violation of the superposition principle will always in-

duce a diode ideality nid �= 1. However a diode quality factor nid �= 1 may stem from

either R(V ) or ΔnD(x)/ΔnDj(V ). If the latter is independent of voltage, the voltage

dependent recombination rate R(V ) may still cause nid �= 1 without violating the

superposition principle.

With the superposition, the diode ideality and the Donolato theorem, I de-

scribed the interconnections between dark and illuminated current in a solar cell.

What is still missing are the connections between the light absorbing and light emit-

ting situation that have been introduced in this chapter [cf. Eqs. (2.33) and (2.41)].

The reciprocity theorem between EL and solar cell quantum efficiency bases on the

detailed balance between two series connnected process: injection and radiative re-

combination as well as photogeneration and collection. As shown in chapter 2.3.2,

Eq. (2.33) bases on the Donolato theorem [34] and Würfel’s generalized Planck’s law

[see Eq. (2.2)] [44]. The reciprocity between open circuit voltage and LED quan-

tum efficiency in turn depends on Eq. (2.33) and has thus the same validity range.

Therefore both Eqs. (2.33) and (2.41) hold, when the Donolato theorem holds,

which is the case as long as the superposition principle is valid and the photocurrent

is voltage independent. In the following chapters, I will discuss these expectations

derived from the basic equations (2.33), (2.41), (2.44), (2.45) and (2.46) for the case

of bipolar and excitonic pin-junction solar cells as well as bulk heterojunction solar

cells.



Chapter 3

Detailed balance model for bipolar

charge transport

Inorganic solar cells are best described by assuming that photons directly create elec-

tron hole pairs and that excitons play no relevant role for energy transport. For this

class of devices with bipolar transport, I develop a detailed balance model compatible

with the Shockley-Queisser theory that is applicable also to pin-type solar cells, being

the most common device geometry used for low mobility materials.

3.1 Introduction

In the fundamentals chapter, I discussed how the maximum solar cell efficiency fol-

lows from the radiation balance between emitted and absorbed photons via the so

called Shockley-Queisser limit. The strict form of the Shockley-Queisser limit as-

sumes step function like absorptances and perfect collection of carriers, implying

that the absorber must be infinitely thick (step function like absorptance) and in-

finitely thin (perfect collection) at the same time. Relaxing the criterion of abrupt

step-function like absorptances is conceptionally very simple, since the equations

used for calculation of the SQ-limit [cf. Eqs. (2.34-2.36)] apply for any shape of the

absorptance. Relaxing the criterion of perfect collection, however, requires a totally

new model to calculate the radiative efficiency.

To include transport with finite mobilities to the detailed balance concept, the

SQ-theory is based on, one needs to solve the continuity equations for electrons and

31
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holes in a semiconductor just like any electronic device simulator does. However,

to be compatible with the SQ-limit, an important ingredient has to be added to

the differential equations used by most conventional device simulators. Radiative

recombination inside a photovoltaic absorber leads to photons with an energy around

the band gap. Of course, it is possible that these photons emitted by the solar

cell itself are also absorbed at another position in the solar cell. This effect is

usually termed photon recycling and has to be included for calculation of radiative

efficiencies in low mobility materials. The importance of photon recycling becomes

obvious, when considering an extreme case, as for instance a fluorescent collector.

Here the dye molecules inside a PMMA matrix are not at all electronically coupled.

Transport of energy only happens by absorption, emission and reabsorption events.

A model that takes into account photon recycling describes fluorescent collectors

just like a solar cell in the limit of zero mobilities.

The self consistent inclusion of photon recycling into a model of a pn-junction

solar cell has already been realized by Mattheis et al. [33]. In this model, the

pn-junction solar cell was discussed on an abstract level assuming the absorber to

consist of the base region, while the pn-junction and the emitter region served as

the boundary conditions for the differential equation in the base. Thus, the problem

reduces to the solution of the diffusion equation for minority carriers in the base

of the absorber. This linear differential equation has then been solved by matrix

inversion.

For many thin film solar cells with rather low mobilities, however, the pn-

junction is not the usually chosen device geometry. Instead, the largest part of the

absorber is made up of an intrinsic (undoped) region, while the selectivity of the

contacts is guaranteed by either thin, highly doped regions of different doping type

or by metals or transparent conductive oxides with different work functions, as in

the case of most organic solar cells.

In this chapter, I will first discuss the basic differences between pn and pin-

type solar cells. Subsequently a detailed balance model for pin-type solar cells is

introduced, which is capable of calculating the radiative efficiencies of low mobility

materials. Since the pin-junction is an interesting case of a non-linear system, I

discuss the validity of the system properties introduced in the fundamentals chap-

ter, i.e. of the superposition principle, the diode ideality and the several reciprocity
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theorems. Finally, I present an application of my detailed balance model, the cal-

culation of mobility dependent radiative efficiencies for two materials making use of

quantum effects for photovoltaic absorbers.

3.2 pn and pin type solar cells

Most solar cells are pn-junction diodes, a cell geometry that is used for crystalline

silicon solar cells but also for thin film solar cells, like Cu(In,Ga)Se2 or CdTe solar

cell. However, it is by far not the only device geometry suitable for solar cells and

in some cases, other device geometries perform considerably better. Any solar cell

consists of a stack of different electronically active layers that may have different

band gaps, doping concentrations and thicknesses. The combination of these lay-

ers, which I will term device geometry in the following, has several tasks for the

photovoltaic operation. The first task of solar cells is (i) absorption of photons and

creation of photogenerated carriers and/or excitons. Thus, the layer stack has to

include at least one layer with an appropriate band gap and a high absorption co-

efficient. The carriers must then be (ii) collected, the electrons and holes each at

a separate contact to achieve a net current flow. This requires merely a selectivity

of contacts. The third requirement is the (iii) existence of one or several capacitive

elements in the solar cell, where the externally applied voltage drops internally.

Figure 3.1 shows how three different device geometries fulfill these three tasks

differently. The pn-junction solar cell usually has a thick base and a thin emitter

region. Most of the light is absorbed in the base, according to requirement (i), and

the pn-junction provides the necessary selectivity for electrons and holes (ii). Under

applied voltage, as shown in Fig. 3.1d, the space charge region of the pn-junction also

serves as capacitor (iii). Carrier collection is usually limited by diffusive transport

of minority carriers to the junction. The system is therefore in first approximation

linear and the collection efficiency of the minority carriers depends in a wide range

not on the applied voltage.

Figure 3.1b presents another possible type of device geometry that is not used

in practical solar cells but serves as a good example to understand, why efficient

collection of carriers is not sufficient for high photovoltaic power conversion effi-

ciencies [63]. In short circuit, the high band offsets at either side of the so-called
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Fig. 3.1: (a,d) A pn-type solar cell, (b,e) a flatband solar cell and a (c,f) pin-type

solar cell both in short circuit and under applied voltage. Contact selectivity neces-

sary for charge carrier collection can be achieved either by a regions with different

doping concentration like for the pn and pin-type cell or with band offsets like for the

flatband cell. The advantage of the pn-type solar cell is that the capacitive element

(the pn-junction) is outside the main absorber region and the diffusive transport to

the junction is unaffected over a large range of applied voltages. The pin-junction

solar cell has a built in field in the whole absorber thereby enhancing carrier collec-

tion by an internal field. However, this field enhanced collection is voltage dependent

(see f).

flatband solar cell provide the required selectivity of contacts. However, under ap-

plied voltage (Fig. 3.1e) the flatband solar cell suffers from the fact that there is

no capacitive element, where the voltage can drop without hindering charge carrier

collection. At the location of the voltage drop, a potential barrier will be created

leading in most cases to a low fill factor [63].
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The flatband solar cell achieves charge separation merely by introducing suffi-

ciently high band offsets. A built in voltage Vbi is not necessary at all, which makes

clear that the open circuit voltage of photovoltaic devices in general is not limited

by the built in voltage. However, an insufficiently small built-in voltage will always

hinder charge carrier collection under applied voltage. Band offsets may be used in

solar cells for better charge carrier collection, however they are in practical cases

always combined with pn-type or pin-type structures.

The third device geometry presented in Fig. 3.1c is the pin-type solar cell. Here

the absorber layer is made up of an intrinsic region, while the selectivity of contacts

is realized by very thin p and n-type regions. These thin and usually highly doped

regions on both sides of the absorber create a large internal field in short circuit

and thus a high built in voltage. Charge transport is no longer merely diffusive but

enhanced by the internal field. For low mobility and short circuit conditions, this

configuration enhances therefore charge carrier collection. If a voltage is applied as

shown in Fig. 3.1f, the built in field decreases. That means the field enhanced charge

transport is by design dependent on applied voltage, making the pin-type solar cell

a non-linear device where the collection efficiency and therefore the photocurrent

are voltage dependent for insufficiently high mobilities.

From the schematic band diagrams in Fig. 3.1, we already arrived at some in-

tuitive assumptions on the advantages and disadvantages of pn and pin-type devices.

In order to provide a solid base for these assumptions, I performed simulations with

the software ASA to compare pn and pin-type devices for the case of non-radiative

recombination as it is usually encountered in most real devices. I assumed Shockley-

Read-Hall (SRH) [61,62] recombination with a recombination rate RSRH of the form

RSRH =
np − n2

i

(n + ni)τp + (p + ni)τn

(3.1)

with the electron and hole lifetimes given by τn = τp = 1μ s.

Figure 3.2 shows the fill factor, open circuit voltage, short circuit current den-

sity and efficiency of a pn-type (solid line) and a pin-type (dashed line) solar cell as

a function of the electron and hole mobility. For high mobilities, the recombination

current in the pn-type cell is smaller than in the pin-type cell, since the region with

high recombination, i.e. where n ≈ p, is larger in the pin-type cell. The fact that

the recombination rate has its maximum at n = p follows directly from Eq. (3.1)
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Fig. 3.2: (a) FF , (b) Voc, (c) Jsc and (d) efficiency η of a pn-type (solid line) and a

pin-type (dashed line) solar cell as a function of the electron and hole mobility. For

the recombination rate, I assumed SRH like recombination with electron and hole

lifetimes τn = τp = 1μ s. For high mobilities, the recombination current in the pn-

type cell is smaller than in the pin-type cell, since the region with high recombination,

i.e. where n ≈ p is larger in the pin-type cell. Thus, the Voc and the high mobility fill

factor of the pn-type cell is higher than that of the pin-type cell. For lower mobilities,

the FF of the pin-type cell decreases already at higher mobilities than the one of the

pn-type solar cell, since the collection of carriers is strongly voltage dependent in

pin-type devices. However, the Jsc for the pin-type cell decreases only at much lower

mobilities than for the pn-type solar cell, since the collection of charge carriers is

enhanced by the built in field extending over the whole absorber width in case of the

pin-type solar cell. The result for η is that for an important region of low mobilities,

the pin-type solar cell is actually superior to the pn-type device.

and from the link between electron and hole concentration, which is given by

np = n2
i exp(qV/kT ). (3.2)

Thus, the Voc of the pn-type cell is higher and subsequently also the fill factor FF

in the limit of high mobilities.
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For lower mobilities, the FF of the pin-type cell decreases at higher mobilities

than the FF of the pn-type solar cell. This is because the collection of carriers is

strongly voltage dependent in pin-type devices leading to a decreased FF (cf. Fig.

3.1f). However, the short circuit current density Jsc of the pin-type cell decreases

at lower mobilities than the one of the pn-type solar cell. This advantage of the

pin-type cell is due to the collection of charge carriers being enhanced by the built

in field extending over the whole absorber width. The final result for the efficiency η

is that for an important region of low mobilities, the pin-type solar cell has actually

a higher efficiency than the pn-type device.

Solar cells with pin-type geometry are mostly used for thin film silicon devices

made from amorphous or microcrystalline silicon. In this case the pin-type cell has

an additional advantage not covered by the simulations of Fig. 3.2. The intrinsic

regions in amorphous silicon for instance have much less defects than the doped

regions, which leads to the situation that the lifetimes are strongly doping dependent.

The advantage of a higher Voc in case of the pn-type device as shown in Fig. 3.2b

would then vanish.

3.3 Superposition, ideality and reciprocity in pin-

type solar cells

From Figs. 3.1c,f and 3.2a, we know that pin-type solar cells are non-linear devices

with a potentially voltage dependent photocurrent. Thus, I will discuss in the follow-

ing, how the device properties superposition, ideality and reciprocity, as introduced

in chapter 2.5, behave in a pin-type device. To discuss all important cases, four

configurations are presented in the following. The configurations are all pin-type

devices and differ only by their mobility and by the recombination mechanism as-

sumed. The two recombination mechanisms are direct band-to-band recombination

and SRH-recombination, which is in general a non-linear recombination process.

The two mobilities μn,p = 103 cm2( V s)−1 and μn,p = 10−2 cm2( V s)−1 are chosen

such that for the higher mobility transport of charge carriers is much faster than

recombination (perfect collection) and that for the lower mobility the efficiency of

carrier collection depends on the electric field and thus on the bias voltage. For



38 CHAPTER 3. BIPOLAR CHARGE TRANSPORT

Fig. 3.3: Comparison of the validity of

three properties of photovoltaic devices:

(a) ideality, (b) superposition and (c) op-

toelectronic reciprocity. Due to the choice

of direct recombination and high mobili-

ties, the diode ideality nid = 1 and the su-

perposition principle (photocurrent Jph =

const) is valid as well as the optoelectronic

reciprocity (Qe,EL = Qe,dir). The working

point for the EL measurements used for

Qe,EL is V = 0.6 V throughout section 3.3.

Fig. 3.4: In spite of the choice of SRH-

recombination leading to the diode ideality

nid ≈ 1.7, the superposition principle is

valid as well as the optoelectronic reci-

procity. This is due to the case that the

mobilities are high, the quasi-Fermi levels

are flat and thus the collection efficiency

is practically unity for any position in the

device.

all four configurations, Figs. 3.3 - 3.6 present the same types of simulations. These

simulations are current/voltage curves (a) in the dark and (b) under illumination. In

addition, the photocurrent Jph = Jd−Jill, defined as the difference between dark cur-

rent density Jd and the current density Jill under illumination is also shown in each
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Fig. 3.5: For direct recombination and

low mobilities, (a) the ideality of the dark

current (solid line) starts to differ from

one (dashed line) and (b) the photocurrent

becomes voltage dependent. Now, also the

optoelectronic reciprocity loses its validity

(Qe,EL �= Qe,dir).

Fig. 3.6: For SRH-recombination and

low mobilities (a) the ideality of the dark

current (solid line) is both higher than one

and heavily voltage dependent just like (b)

the photocurrent. The optoelectronic reci-

procity loses its validity (Qe,EL �= Qe,dir).

subfigure (b). Finally, the (c) electroluminescence spectrum φem and the quantum

efficiencies Qe,EL and Qe,dir are shown. For all simulations of the electroluminescence

spectrum in section 3.3, a working point V = 0.6 V is chosen.

Figure 3.3 shows the abovementioned simulations for the configuration with

the parameters μn,p = 103 cm2( V s)−1 for electrons and holes (high mobility case), a

direct recombination coefficient B = 10−9 cm3 s−1, a device thickness of d = 500 nm

and an absorption coefficient α of crystalline silicon [64]. Figure 3.3a shows that

the ideality factor nid of the dark current is unity. This is due to the assumption of
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direct recombination, where the recombination rate is given by Rdir = Bnp. Since

B is a constant and independent of voltage and since np = const due to the high

mobility, the recombination rate is proportional to exp(qV/kT ), with an ideality of

one.

Figure 3.3b shows that the photocurrent, i.e. the difference between the il-

luminated and dark J/V -curves is constant over voltage. That means that the

superposition principle [65] is valid. Figure 3.3c shows that the quantum efficiency

Qe,EL (circles) calculted from the EL spectrum (dash-dotted line) is equal to the di-

rectly measured Qe,dir (solid line). Thus, the optoelectronic reciprocity [Eq. (2.33)]

is valid.

Figure 3.4 demonstrates that for high mobilities, we can also use Shockley-

Read-Hall (SRH) recombination and still obtain the same result for the superposition

and the reciprocity, although the diode ideality differs from unity. This means that

the recombination rate and thus the recombination current are voltage dependent

and not proportional to exp(qV/kT ). The voltage dependent recombination rate

leads to a recombination current, which is described by J0(V ) exp(qV/kT ). The

voltage dependent prefactor J0 is equivalent to an ideality nid �= 1 [66]. Note here

that the validity of the reciprocity for the high mobility limits shown in Figs. 3.3

and 3.4 is equivalent to the validity of Würfel’s generalization [44] of Planck’s and

Kirchhoff’s law.

Figure 3.5a shows that for direct recombination and low mobilities, the ideal-

ity of the dark current (solid line) starts to differ from unity (dashed line) and the

photocurrent becomes voltage dependent (see Fig. 3.5b). Now, also the optoelec-

tronic reciprocity loses its validity (Qe,EL �= Qe,dir) as shown in Fig. 3.5c. This is

because collection and injection are now heavily field and thus voltage dependent

and thus no longer the same in the illuminated short circuit situation and in the

dark situation leading to the EL emission. The difference between Qe,EL and Qe,dir

now depends on the bias conditions. For all simulations of Qe,EL I used V = 0.6 V.

For higher voltages the built-in field becomes lower and thus the difference between

the short circuit situation and the situation with applied bias becomes larger. For

lower voltages Qe,EL and Qe,dir approach each other.

Figure 3.6a shows that for SRH-recombination and low mobilities the ideality

of the dark current (solid line) is both higher than one and heavily voltage dependent
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just like (see Fig. 3.6b) the photocurrent. For the validity of the optoelectronic

reciprocity holds the same as for direct recombination with low mobilities: The

voltage dependence of collection and injection leads to a difference between Qe,EL

and Qe,dir depending on the applied voltage.

The main conclusion of the section 3.3 is that an ideality factor nid �= 1 may

have two reasons, namely a non-linear recombination process (like SRH-recombination)

or voltage dependent collection as encountered in low mobility pin-type solar cells.

The validity of the superposition principle as well as the validity of the optoelec-

tronic reciprocity only depends on the question whether carrier collection is voltage

dependent or not. Thus, the validities of superposition and reciprocity seem to be

equivalent.

3.4 Model

After these preliminary investigations of pin-type solar cell, I introduce a model that

is capable of calculating also the radiative limit for finite mobilities. To do so, I have

to calculate first the carrier concentrations and then derive the current densities for

electrons and holes from them. To calculate the carrier concentrations as a function

of depth in the absorber, three differential equations have to be solved. The Poisson

equation Δϕ = −ρ/ε - relating the electrical potential ϕ to the space charge ρ and

the dielectric constant ε - as well as the continuity equations describing transport as

well as generation and recombination of carriers. The drift diffusion equations for

the electron concentration n and the hole concentration p in a pin-type device are

given by

−1

q

dJn

dx
= −Dn

d2n

dx2
− Fμn

dn

dx
= G − Bnp (3.3)

1

q

dJp

dx
= −Dp

d2p

dx2
+ Fμp

dp

dx
= G − Bnp (3.4)

where Jn and Jp are the electron and the hole current densities, F is the electric

field, G is the optical generation rate, Dn,p = μn,pkT/q is the diffusion constant

of the electrons and holes. Due to the principle of detailed balance, the radiative

recombination constant B is linked to absorption via the van Roosbroeck-Shockley
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Fig. 3.7: Schematic band diagram of the simulated pin-type solar cell highlighting

the boundary conditions needed for the model in chapter 3.4. At the electron contact

at x = 0, I allow for electron extraction and injection, while the extraction of holes

which corresponds to the recombination of holes is set to zero. At the hole contact, at

x = d, the difference between hole extraction and injection gives the net hole current.

Again, minority carrier recombination is set to zero.

equation [48]

Bn2
i =

∫
α(E)φbb(E)dE (3.5)

Figure 3.7 shows the schematic band diagram of the pin-type solar cell under

investigation. I only solve the continuity equations in the intrinsic region of the

pin-device, while the p and the n-type layer are assumed to are infinitely thin and

serve only as the boundary condition. In general, I need four extraction/injection

velocities at the two contacts , i.e. two at x = 0 and two at x = d. For simplicity, I

assume throughout the chapter that the electron contact is only active for electrons

and the hole contact is only active for holes, meaning that surface recombination

of minorities is suppressed. Thus, there are two boundary conditions left. For the

electrons at the electron collecting contact (x = 0), I consider the possibility of

extraction and injection to obtain a net electron current

jn = S∗

nnj − Snnb (3.6)
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where the rate constants Sn, S∗

n have the dimension of a (collection or injection)

velocity. In Eq. (3.6), the concentration of electrons on the bulk side of the contact

is denoted as nb and the concentration of electrons on the contact side is denoted

nj. Detailed balance requires now that the net current is zero in thermodynamic

equilibrium thereby interlinking the two rate constants via

S∗

nnj0 = Snnb0 (3.7)

where nj/b0 is the equilibrium concentration of electrons in the bulk/junction. Equiv-

alently, for the holes at the hole contact (x = d) holds

jp = −S∗

ppj + Sppb (3.8)

with

S∗

ppj0 = Sppb0 (3.9)

In addition to the boundary conditions for the two types of carriers, I have to define

boundary conditions for the potential. In contrast to pn-junction solar cells, where

applying a voltage means to inject minority carriers at the pn-junction into the

base, in pin-junctions electrons are injected into the intrinsic layer at the n-contact

and holes at the p-contact. This is achieved by changing the potential between the

electron and hole contact via

Vbi = Vbi,0 − V (3.10)

where V is the applied voltage and Vbi,0 is the equilibrium built in voltage.

3.5 Application to quantum well solar cells

3.5.1 Introduction

Theoretical calculations for estimation of efficiency limits of a given material are a

two step process. The first step needs to derive material parameters theoretically.

This task may be realized for instance by first principle calculations or calculations

via the effective mass approximation [67] that determine the band structure of the

new material. From this band structure, quantities like absorption coefficient and

density of states follow, which subsequently serve to evaluate the efficiency limits of
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Fig. 3.8: Scheme of the two investigated materials, (a) a SiO2/Si superlattice and

(b) a ZnO/ZnS nanowire. For both materials the schematic band diagram and the

thicknesses and diameters of the geometry are given.

the given material. A first estimate of efficiency directly follows from the band gap,

by calculating the SQ efficiency limit. However, with this approach a high amount

of information contained, e.g., in the absorption coefficient is lost [68].

This chapter therefore shows how to go step by step from the SQ-limit [30]

to realistic efficiencies. Thereby, I am able to identify both the potential of a given

concept but also the critical order of magnitude required of those parameters that

are not accessible by first principle calculations [36]. For example, I show how to

determine the necessary thickness and the necessary quality of the light trapping

scheme to have enough absorption of photons. I also estimate the mobilities and

lifetimes necessary for efficient extraction of carriers and a sufficiently high open

circuit voltage.

The materials I investigate are SiO2/Si quantum wells, which I compare to

recently published theoretical data on coaxial ZnO/ZnS nanowires [22]. These ma-

terials have in common that they are possible candidates as the high band gap

partner in a tandem configuration, for instance with crystalline silicon, and that the

materials are abundant and non-toxic. Figure 3.8 presents a schematic drawing of

the geometry and band diagram of the two materials. Finding materials with high
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band gaps Eg ≈ 1.7− 1.9 eV as a tandem partner is probably the most feasible way

to enhance current state of the art single junction concepts considerably above their

present limits. This is because up to now multijunction approaches are the only

concept that has proven its ability to increase efficiencies above the SQ-limit [69].

All other concepts, like up- [70, 71] and down-conversion [72, 73], hot carrier solar

cells [74–76] and multiple exciton generating absorbers [26, 77, 78] are still lacking

experimental proof of efficiencies above the Shockley-Queisser limit.

A natural candidate as a tandem partner for single junction cells with band

gaps around Eg ≈ 1.1 eV would be amorphous silicon [79]. However, although

this material has an adequate band gap of around 1.8 eV, amorphous silicon is

currently lacking a sufficiently high short circuit current to make current matching

with high quality solar cells like c-Si possible. Therefore, superlattice absorber

materials using SiO2/Si [80–84], SiNx/Si [85] or SiC/Si [86, 87] quantum wells or

quantum dots are currently investigated experimentally by different research groups.

Deposition of such stacks is possible, for instance, with plasma enhanced chemical

vapor deposition of alternating layers of Si and SiO2 followed by a rapid thermal

annealing step. Confinement effects [88] in the superlattices allow band gaps to be

adjusted by changing the thickness of the Si layer and the thickness and material

of the surrounding dielectric. In addition, the small size of these quantum confined

structures is supposed to lead to an increased oscillator strength. However, quantum

confinement is in contrast to the task of charge carrier extraction, requiring highly

mobile carriers. In addition, a quantum confinement implies an increase in internal

interface area, which is most likely to be detrimental for non-radiative charge carrier

lifetimes. Thus, the main challenge for any absorber making use of quantum effects

is the achievement of sufficiently high absorption at the right band gap for example

for use in tandem configuration with c-Si - but at the same time the achievement

of high carrier mobilities and carrier lifetimes albeit the large band offsets and the

many interfaces in the absorber.

3.5.2 Optical results

From the first principle calculations (which were carried out in Jena [36]), I derived

absorption coefficients, effective densities of state and anisotropic effective masses
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Fig. 3.9: (a) Absorption coefficient and (b) absorptance of the three SiO2/Si

quantum wells [89] and of the ZnO/ZnS nanowire [22]. For the absorptance, I

assumed a thickness d = 300 nm, Lambertian light trapping and zero front sur-

face reflection as well as unity back surface reflection. The band gaps, defined

as the onset of absorption are indicated by arrows (Eg = 1.76 eV(wSi = 1.08 nm),

Eg = 1.74 eV(wSi = 1.62 nm, wSi = 2.16 nm), Eg = 1.88 eV (ZnO/ZnS nanowire))

in transport direction. In a first step, I focus only on the optical properties of our

materials, i.e. on the absorption coefficient α and the index of refraction n.

In the original Shockley-Queisser theory, the radiative limits of solar cells were

calculated only from the band gap, assuming a step function like absorptance. How-

ever, in reality, solar cells will have a finite thickness and the absorptance will be
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Fig. 3.10: Efficiency as a function of band gap for step function like absorptances

(solid line), an absorber temperature T = 300 K and an AM1.5G spectrum. The

radiative high mobility efficiencies calculated for the three SiO2/Si quantum well

configurations and for the ZnO/ZnS nanowire are indicated by open symbols. The

thickness of the Si layer is wSi = 2.16 nm, 1.62 nm and 1.08 nm from high efficiency

to low efficiency. (b) Short circuit current density in the SQ-limit as a function of

band gap (solid line) and short circuit current density of a 200 μm thick c-Si solar

cell in the high mobility limit and with Lambertian light trapping (dashed line). The

c-Si cell is assumed to be optically below an ideal step-function like topcell with the

band gap indicated by the x-axis. Thus, the intersection of the dashed and the solid

line marks band gap and efficiency of the perfect top cell for c-Si. The short circuit

current of the SiO2/Si quantum well configurations and of the ZnO/ZnS nanowire

are again indicated by open symbols.
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smeared out at the band gap. The information about increased oscillator strengths

and therefore increased absorption coefficients due to quantum size effects will be

lost by discussing only infinitely thick absorbers. Thus, I need to calculate the ra-

diative limit for finite thicknesses, which requires the choice of a certain thickness of

the absorber layers. For the moment, the simulations use a thickness d = 300 nm,

which is typical for other thin film solar cells like amorphous silicon. Later (cf. Fig.

3.11), I will also discuss the thickness dependence of the photocurrent.

To calculate the upper limit of the absorptance at a given thickness, I assume

zero reflection at the front surface (Rf = 0) and unity reflection at the back (Rb = 1)

as well as one Lambertian diffuser on top of the absorber layer. Then the absorptance

follows as

a(E) =

∫ d

0

2α(1 − Rf)
Ei2(αx) + Ei2(α(2d − x))

1 − tcell(1 − tlamb)
dx (3.11)

with tlamb = 1/n2. Equation (3.11) uses the definition

tcell = (e−2αd(1 − 2αd) + (2αd)2Ei(2αd)) (3.12)

for the angle-integrated transmission of the cell from the front with one reflection

at the back side to the front, where

Ei(z) =

∫
∞

z

e−t

t
dt (3.13)

is the exponential integral, and

Ei2(z) = z

∫
∞

z

e−t

t2
dt = e−z − zEi(z). (3.14)

Equation (3.11) allows the calculation of the absorptance a(E) from the ab-

sorption coefficient α in the limit of Lambertian light trapping. One additional

requirement for the calculation of the absorptances is the knowledge of the refrac-

tive index n of the absorber material. This is due to the fact that the product of

photon density of states and speed of light in a medium with refractive index n scales

with n2. Isotropically distributed photons will always have a higher density in the

medium compared to air or vacuum and thus also the path length of weakly absorbed

photons scales with n2. Total internal reflection described by Snell’s law guarantees

that this thermodynamic requirement actually holds, by defining the transmission

through a Lambertian surface as tlamb = 1/n2. The refractive indices nSL used for
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calculation of the absorptances of the SiO2/Si superlattices are estimated from the

empirical refractive indices of Si and SiO2 via

nSL =
wSinSi + wSiO2nSiO2

wSi + wSiO2

(3.15)

For the refractive index of silicon and SiO2, I used nSi = 3.5 and nSiO2 = 1.5 leading

to the values n1.08 = 2.37, n1.62 = 2.57, n2.16 = 2.71 for the refractive indices for the

cells with wSi = 1.08 nm, 1.62 nm and 2.16 nm, respectively. The refractive index

nnw of the ZnO/ZnS nanowire is simply unknown. Even the assumption that it may

be in between the refractive indices for ZnO and ZnS seems not to be valid in this

case of a type II heterojunction. The band gap of the nanowires is not in between

the band gap of ZnO and ZnS but much lower, meaning that the optical properties

of the nanowire are fundamentally different from either of the two bulk materials.

In order to avoid big differences compared to the superlattices that are due to this

unknown refractive index, I choose it to be nnw = 2.5.

With the help of the refractive indices defined above and the absorption coef-

ficients calculated from first principles and presented in Fig. 3.9a, Eqs. (3.11-3.14)

allow the calculation of the absorptances and Eqs. (2.37 - 2.39) the calculation of the

radiative high mobility efficiencies of the three SiO2/Si quantum well configurations

and of the ZnO/ZnS nanowire. Figure 3.10a compares these radiative efficiencies

(open circles) with the result of the Shockley-Queisser theory (solid line). Figure

3.10b presents the corresponding short circuit current densities, again in comparison

to the Shockley-Queisser theory (solid line). In addition to the short circuit current

densities in the SQ-limit and the radiative limit of the four cells with finite thick-

nesses, the dashed line represents the short circuit current density of a 200 μm thick

silicon cell, again with Lambertian light trapping, that is placed optically below a

step-function like top cell with the band gap as indicated by the x-axis. That means,

for a two terminal tandem configuration with a very good crystalline silicon cell as

the bottom cell, the intersection of dashed and solid line defines the perfect band

gap and the short circuit current to be achieved. The values of this intercept are

Eg = 1.72 eV and Jsc = 21.7 mA/ cm2. The values calculated for the three SiO2/Si

superlattices are quite close to this intersection, while the ZnO/ZnS nanowire has a

slightly too high band gap and too low short circuit current, meaning that it would

require a higher band gap bottom cell or a triple junction configuration for best
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performance.

I mentioned that the thickness d = 300 nm used for the calculation of the

absorptances in Fig. 3.9b was an arbitrary value. Thus, Fig. 3.11 shows the

evolution of short circuit current density Jsc versus absorber thickness for one of the

three SiO2/Si superlattices (wSi = 1.08 nm). The lines correspond to the absorptance

calculated with Eq. (3.11) under the assumption of Lambertian light trapping.

This ideal case with zero reflection at the front is compared to two layer stacks

consisting of a thick glass layer on top and a 100 nm thick ZnO layer between the

glass and the absorber layer. Optically below the absorber are 20 nm ZnO and 300

nm Ag. The glass and the ZnO layers are assumed to be perfectly transparent and

the refractive indices for ZnO and Ag are taken from Ref. [90]. For the calculation of

the absorptance of the layer stack, I used a thin film transfer matrix approach able

to calculate absorptances coherently. The difference between the two layer stacks is

the angular distribution function of the interfaces. While the dotted line represents

a layer stack with isotropically scattering surfaces, the dashed line represents flat

surfaces. Thus Fig. 3.11 shows how much light is lost to reflections if a realistic layer

stack is assumed. This loss is given by the difference between the solid and the dotted

line. The current gain due to scattering surfaces and enhanced trapping of weakly

absorbed light is given by the difference between the dashed and the dotted line.

At d = 300 nm, the difference due to light trapping amounts to Jsc ≈ 4 mA/ cm2,

which shows that efficient light trapping is a main prerequisite for these thin film

approaches.

3.5.3 Results for finite mobilities

Up to now, I calculated the Shockley-Queisser limit from the absorption coefficients

derived from first principles calculations. In the following, the model described in

section 3.4 is used to calculate the radiative limit also for finite mobilities. Com-

pared to the purely optical calculations in the Shockley-Queisser theory, the detailed

balance model needs additional paramters, i.e. the mobility and the intrinsic carrier

concentration ni (see Eq. (3.5)).

The intrinsic carrier concentration follows from the effective density of states

NC and NV of conduction and valence band and the band gap of the different ma-



3.5 APPLICATION TO QUANTUM WELL SOLAR CELLS 51

Fig. 3.11: Short circuit current density displayed as a function of absorber thickness

in the high mobility limit for the SiO2/Si quantum well configuration (wSi = 1.08 nm)

for Lambertian light trapping with perfect antireflective coating, i.e. Rf = 0 (lines),

for Lambertian light trapping and considering the reflections at an air/glass and

glass/ZnO interface, i.e. Rf > 0 (dotted lines) and for flat surfaces (dashed line),

where the same finite reflection at the front is included as for the dotted line. In

case of the flat surfaces, the simulation includes coherent interference in all layers

except the front glass. The difference between the flat surface (dashed line) and the

Lambertian surface (dotted line) due to light trapping is tremendous, namely around

4 mA/ cm2 at d = 300 nm, showing the large influence of light trapping for these thin

devices.

terials via the equation

ni =
√

NCNV exp (−Eg/2kT ). (3.16)

The band gaps follow from the onset of absorption as Eg (wSi = 1.08 nm) = 1.76

eV, Eg (wSi = 1.62 nm) = Eg (wSi = 2.16 nm) = 1.74 eV, and Eg (ZnO/ZnS) =

1.88 eV (cf. Fig. (3.9)). The effective densities of states for the superlattices were
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Fig. 3.12: (a) Effective density of states for valence (circles) and conduction band

(squares) as well as (b) one dimensional effective masses normalized to the electron

mass in vacuum.

calculated and are presented in Fig. 3.12a. The effective density of states for the

nanowire is unknown and was set to an arbitrary value of NC = NV = 1019 cm−3.

The detailed balance model is designed in a way that for high mobilities of free

carriers, the result is the same as in the generalized SQ-limit. Figure 3.13 shows the

current/voltage curve of the three SiO2/Si superlattices and the ZnO/ZnS nanowire

in the radiative limit and for electron and hole mobilities μn = μp = 103 cm2( V s)−1.

The Jsc, Voc and efficiency are equal to those calculated with the radiation balance

alone [Eqs. (2.37 - 2.39)], thus these mobilities are a good approximation of infinity.

The density of states and the effective masses of electrons and holes are not
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Fig. 3.13: Current/Voltage curves in the radiative high mobility limit for 300 nm

thick pin-devices for the four discussed theoretical absorber materials (three SiO2/Si

superlattices: wSi = 1.08 nm - solid line, wSi = 1.62 nm - dashed line, wSi = 2.16 nm

- dotted line; and the ZnO/ZnS nanowires - dash-dotted line). The efficiencies from

these curves are the same that follow from the calculation of the SQ-limit.

only relevant to calculate the intrinsic carrier concentration but they have also been

used to estimate the mobilities of free charge carriers [67]. The Bloch mobility

follows from [67]

μn,p =
qτsc

mn,p

, (3.17)

where τsc is the scattering time and mn,p are the effective masses for electrons and

holes. In case of the SiO2/Si superlattices, the mobility is expected to be strongly

anisotropic. Since transport has to take place in direction normal to the interfaces,

the relevant mobility is smaller than the mobility averaged over all directions. Thus,

I have to determine the one dimensional effective mass of electrons and holes in z-

direction. Figure 3.12b shows the result of this calculation normalized to the mass

m0 of electrons in vacuum. In order to calculate mobilities from the effective masses,

I still need an estimate of the scattering time τsc. Jiang and Green [67] discuss this

issue extensively for the case of Si quantum dots embedded in a dielectric and I
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therefore use the same value, namely τsc = 30 fs. This scattering time together

with the effective masses in Fig. 3.12b yields the mobilities μn = 17.6 cm2( V s)−1,

μp = 4.3 cm2( V s)−1 (for wSi = 1.08 nm), μn = 20.5 cm2( V s)−1, μp = 6.3 cm2( V s)−1

(for wSi = 1.62 nm) and μn = 8.2 cm2( V s)−1, μp = 8.8 cm2( V s)−1 (for wSi = 2.16

nm).

For the case of the ZnO/ZnS nanowires, I don’t have calculations of the ef-

fective masses needed for Eq. (3.17). Nevertheless, literature provides values for

ZnO nanowires, which are however much thicker than our current nanowires. The

reported values are in the range of [91–94] 10 cm2( V s)−1 < μ < 30 cm2( V s)−1.

Figure 3.14 shows the short circuit current density as a function of the electron

and hole mobility in the limit of solely radiative recombination. Here, the mobilities

for electrons and holes are assumed to be equal. It is obvious that the critical

mobility in the radiative limit is far below the values that have been calculated

from the effective masses or have been taken from literature. For all four samples,

again with a thickness of d = 300 nm, the critical mobility μc, where the short circuit

current starts to drop below its high mobility limit, is in the range 10−5 cm2( V s)−1 ≤
μ ≤ 10−4 cm2( V s)−1, i.e. 4 - 6 orders of magnitude below the estimated values.

In the following, I need to investigate, whether this buffer is sufficient for high

photocurrents also in the case of non-radiative recombination.

3.5.4 Results for non-radiative recombination

The last step from highly idealized devices to more realistic ones is the introduction

of non-radiative recombination combined with the inclusion of parasitic absorption

in the ZnO window layers. I assume a layer stack as shown in Fig. 3.15a, which

is identical to the one used for Fig. 3.11. The layer stack consists of a thick glass

layer on top and a 100 nm thick ZnO layer between the glass and the absorber layer.

Optically below the absorber are 20 nm ZnO and 300 nm Ag. The optical properties

of the layers are taken from Ref. [90]. Taking the same mobilities and densities of

states that are given in Table 3.1, I receive the cell parameters presented in Fig.

3.16 for the three SiO2/Si superlattices and for the ZnO/ZnS nanowire as a function

of carrier lifetime. Non-radiative recombination is modeled with a recombination

rate according to Shockley-Read-Hall statistics (see Eq. (3.1)). In the following, I
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Fig. 3.14: Short circuit current density Jsc as a function of electron and hole mo-

bility μ = μn = μp for the three SiO2/Si superlattices (wSi = 1.08 nm - solid line,

wSi = 1.62 nm - dashed line, wSi = 2.16 nm - dotted line) and the ZnO/ZnS nanowires

(dash-dotted line) in the limit of solely radiative recombination for a pin-type device

with a thickness of d = 300 nm. For mobilities μ < 10−4 cm2/V s, the short circuit

current density Jsc starts to drop rapidly below its high mobility limit. This critical

mobility μc ≈ 10−4 cm2/V s is around five orders of magnitude below the estimated

mobilities, which are in the range of μ ≈ 101 cm2/V s. Thus, I expect low mobilities

to deteriorate device performance only for a considerable amount of non-radiative

recombination.

always set the lifetimes for electrons and holes equal, i.e. τn = τp = τ .

Figure 3.16a shows that the efficiency increases monotonically with longer

carrier lifetimes τ , however, the curves show two regions with different slopes. For

lifetimes τ < 1 ns, the increase is steeper than for higher lifetimes. The explanation

for that is given by the different dependence of open circuit voltage Voc, fill factor

FF and short circuit current density Jsc on the lifetime. Figure 3.16b shows that

the short circuit current density Jsc stays constant for τ > 1 ns and starts to decay
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Fig. 3.15: Scheme of the layer stacks used for the calculation of the efficiencies

with non-radiative recombination. The stack shown in (a) is used for Fig. 3.16,

while the tandem cell in (b) is used for Fig. 3.17. The absorber layer in (a) and the

top cell in (b) represent the superlattice or nanowire layer.

drastically once the lifetime drops below 1 ns. In contrast, the slope of the increase

of open circuit voltage Voc versus lifetime as shown in Fig. 3.16c does not vary much.

The fill factor, which is presented in Fig. 3.16d, follows roughly the decay of the

short circuit current density Jsc, with the only difference that the drop starts at

slightly longer lifetimes τ ≈ 10 ns. This higher sensitivity of the fill factor compared

to the short circuit current density Jsc to the lifetime is due to the collection of

carriers being dependent on the built-in field in the pin-junction. Since the built in

field is higher at zero voltage than at maximum power point voltage, the collection at

short circuit is more efficient at a given mobility lifetime product μτ . Collection at

higher voltages and thus the fill factor will therefore suffer first, when the μτ -product

decreases.

It would now be interesting to estimate the carrier lifetimes one could expect

from the superlattice structures and to compare them with the lifetimes required

by Fig. 3.16. In order to calculate surface recombination velocities from lifetime
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Fig. 3.16: (a) Efficiency, (b) short circuit current density Jsc, (c) open circuit

voltage Voc and (d) fill factor FF as a function of electron and hole lifetime τ = τn =

τp for the three SiO2/Si superlattices (wSi = 1.08 nm - solid line, wSi = 1.62 nm -

dashed line, wSi = 2.16 nm - dotted line) and the ZnO/ZnS nanowires (dash-dotted

line). I assume a device thickness of d = 300 nm and recombination following a

Shockley-Read-Hall statistics with a recombination center in the middle of the device.

While the open circuit voltage decreases with shorter lifetimes monotonously with a

relatively constant slope, Jsc and FF have two regions with a different slope. Above

a certain lifetime τ > 10 ns (for the FF) and τ > 1 ns (for the Jsc), the values

are nearly constant, while they drop abruptly for lower lifetimes τ . These critical

lifetimes depend linearly on the mobility μ and represent the critical μτ -product up

to which efficient extraction of the photocurrent is possible.

measurements on passivated wafers, Sproul [95] developed an equation for the de-

pendence of lifetime τS and surface recombination velocity given by

τS =
w

2S
+

w2

Dπ2
(3.18)

where w is the thickness of the whole wafer, S the surface recombination velocity
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Tab. 3.1: Values for the electron and hole mobilities μn and μp, the effective density

of states NV and NC for valence and conduction band and the refractive index n for

the SiO2/Si-superlattices and the ZnO/ZnS nanowires used for the simulations if not

stated otherwise. The effective density of states and the refractive index are used for

Figs. 3.13, 3.14-3.17 and the mobilities for Figs. 3.16 and 3.17.

SiO2/Si-superlattice ZnO/ZnS

wSi = 1.08 nm wSi = 1.62 nm wSi = 2.16 nm nanowires

μn [ cm2/V s] 17.6 20.5 8.2 10

μp [ cm2/V s] 4.3 6.3 8.8 10

NC [ cm−3] 3.64 × 1019 4.44 × 1019 5.68 × 1019 1 × 1019

NV [ cm−3] 6.57 × 1019 2.58 × 1019 2.30 × 1019 1 × 1019

refractive index n 2.37 2.57 2.71 2.5

of both surfaces and D the minority carrier diffusion constant. If the thickness

w decreases, the second term describing the diffusion to the surface vanishes. If

I now assume our superlattice to be made up of several Si-wells of thickness w

that are well passivated with SiO2, a crude approximation of the resulting lifetime

would be to use τS = w/2S for the lifetime of a single well and τS = w/(2Snw)

for a parallel connection of nw wells. To estimate the order of magnitude of the

lifetime, I assume w = 2 nm, S = 10 cm/s representing a very well passivated

surface and about 100 wells. This leads to a lifetime of τS = 100 ps, which is one or

two orders of magnitude below the required lifetimes. It is therefore an important

question, whether such simplistic calculations are admissible in quantum well solar

cells or whether recombination in these devices behaves fundamentally different for

extremely small feature sizes.

3.5.5 Tandem solar cells

As mentioned in the introduction, the long term goal of research on the presented

absorber layers is the use as a top cell in a multijunction solar cell. In order to

estimate the usefulness of the SiO2/Si superlattices for the combination with e.g.

crystalline silicon in a two terminal tandem device, I extended the layer stack used for
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Fig. 3.17: Short circuit current density Jsc and efficiency η of a two termi-

nal tandem cell consisting of a pin-type SiO2/Si superlattice (Si well thickness

wSi = 1.62 nm, intrinsic layer thickness di = 300 nm) as the top cell and a pn-

type crystalline silicon bottom cell. The bottom cell thickness of db = 25μm was

chosen such that the bottom cell is not current limiting. The carrier lifetime for the

superlattice required for an efficiency η = 20% is roughly τ = 1 ns. The efficiency

of the bottom cell alone is ηcSi = 21.8%

Fig. 3.16 by adding a pn-junction made of crystalline silicon below the superlattice

in pin-configuration. To enhance the photocurrent produced in the top cell, I added

a thin, 20 nm thick intermediate reflector layer [96] with the refractive index of

SiO2. Thus, part of the light that hits the back surface of the top cell does not enter

the bottom cell, but is reflected back. The thickness of the bottom cell was then

chosen in a way that it is as thin as possible, but does not limit the current. Like

for the calculations in Fig. 3.16, I assumed Lambertian light trapping also for the

simulation of the tandem cell. The schematic drawing of the resulting layer stack is

presented in Fig. 3.15b.

Figure 3.17 shows the short circuit current density and the efficiency of this

tandem device as a function of the SRH lifetime of electrons and holes in the top
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cell. The top cell is made up of the SiO2/Si superlattices with the wSi = 1.62 nm

Si well thickness, since this absorber produced the highest photocurrents in a single

junction configuration as shown in Fig. 3.16. It is obvious that the photocurrent of

the tandem device is considerably below the Jsc = 21.7 mA/ cm2 that were identified

in Fig. 3.10 as the optimum value for a c-Si based tandem cell. That is due to the

fact that the band gap of Eg = 1.74 eV is close to perfect in the SQ-limit for

step-function like absorptances but not for our more realistic assumptions on device

performance. Loss of photocurrent is due to finite absorption coefficients, imperfect

light trapping in the tandem configuration (the top cell has no perfect back reflector),

non-zero reflection, small amounts of parasitic absorption and imperfect collection

of photogenerated carriers (at least for lifetimes τ < 10 ns). In order to ensure

current matching in a two terminal tandem cell, the band gap of the top cell should

therefore be chosen considerably smaller than that given by the band gap in the

SQ-limit.

The efficiency of the tandem cell just reaches the experimental efficiency limits

of crystalline silicon solar cells of η = 24.7%. Progress beyond that value would

need a better adaptation of the two band gaps. However, high efficiencies in the

tandem configuration are reached already at a low thickness of the total stack,

which is around 25 μm and therefore much thinner than usual wafer based devices.

Due to the difficulties of the top cell to reach a sufficiently high photocurrent, the

use of tandem devices will therefore lead to the largest benefit for rather thin and

lower quality bottom cells. Note that the efficiency of the c-Si bottom cell alone is

ηcSi = 21.8%, where I assumed a SRH-lifetime τ = 1 ms and a surface recombination

velocity S = 10 cm/s.

3.5.6 Conclusions

I have presented simulations of solar cells consisting of new types of absorber ma-

terials that use quantum effects to fine-tune their optical properties. These new

absorber materials are SiO2/Si superlattices with different Si well thicknesses and

ZnO/ZnS coaxial nanowires. The optical and partly also electrical properties have

been obtained by first principle calculations. Subsequently, these optical and electri-

cal properties have been used to simulate complete devices. To determine meaningful
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efficiency limits I have gone step by step from idealized systems as defined by the

Shockley-Queisser theory to more realistic systems, where the efficiency limits are,

however, less fundamental. These device simulations allow us to determine criti-

cal values for device properties as mobility and carrier lifetime that must be met

to ensure efficient photovoltaic energy conversion. Simulations of complete tandem

devices show that there is a considerable difference in photocurrent between the

Shockley-Queisser theory and more realistic simulations. To ensure current match-

ing albeit this difference in photocurrent one needs considerably lower band gaps for

the top cell thereby increasing the part of the spectrum absorbed by the top cell.
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Chapter 4

Detailed balance model for

excitonic and bipolar charge

transport

In most organic semiconductors, absorption of a photon first generates excitons,

which then dissociate to form free carriers. The charge seperation process is thus a

two step process: exciton dissociation followed by seperation of the free carriers. This

chapter therefore includes this two step charge seperation process into the detailed

balance model.

4.1 Introduction

The introduction of organic materials as photovoltaic absorbers in organic [6] or

dye-sensitized [17] solar cells has raised questions whether or not these new types of

devices can be described with the help of theories that initially have been developed

for inorganic solid-state type devices usually provided with a pn-homo- or hetero-

juncion. In addition, the nano-scale mixture of different organic materials [7,8] has

not only boosted the efficiencies of organic solar cells but also led to an apparent

new type of solar cell, the bulk-heterojunction. Recently, it has been proposed to

divide all solar cells into two classes, namely the classical inorganic solar cells and

the ’excitonic’ solar cells, embracing essentially all devices that use organic absorber

materials [28,29].

63
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Thus, this chapter extends the bipolar detailed balance model presented in

chapter 3 by including the transport and interaction of excitons to the model. The

basic ingredients are (i) light absorption and creation of an exciton as well as ra-

diative recombination and photon emission, (ii) exciton dissociation at an interface

or in the bulk and the corresponding inverse process, the recombination of an elec-

tron/hole pair in an exciton, and (iii) drift-diffusion transport of electrons and holes

as well as diffusive transport of excitons.

The compliance of our model with the principle of detailed balance ensures that

for high mobilities and solely radiative recombination, I obtain the same photovoltaic

performance of our device as the one following from the SQ-limit, no matter whether

transport is predominantly excitonic or bipolar and no matter whether our device

is pn-type or pin-type. Proceeding to devices with non-ideal transport, I identify

differences between the cases of predominantly excitonic and predominantly bipolar

transport in pin-type devices. Since the built in field in pin-type devices depends on

the applied voltage, collection and injection of charged particles like electrons and

holes will also be a function of voltage if mobilities are low. This voltage dependence

is not only visible in simulated current/voltage curves but also in electroluminescence

(EL) spectra. I show that the validity of the reciprocity [see Eq. (2.33)] between EL

and solar cell quantum efficiency, directly correlates with the voltage dependence of

carrier collection and injection. For the cases of either high mobilities or excitonic

transport, no voltage dependence is visible and the reciprocity relation is valid.

In addition to the cases of excitonic and bipolar solar cells, I also discuss how to

incorporate the concept of bulk heterojunction solar cells into our model. Finally, I

explain how the effects of band offsets at the heterointerface and the morphology of

the blend in the bulk heterojunction cell are implicitly contained in the principle of

detailed balance.

4.2 Model

4.2.1 Excitonic and bipolar solar cells

To be compatible with the detailed balance theory of Shockley and Queisser, the

absorption of photons emitted by the device itself has to be taken into account [33].
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This effect of optical coupling in the absorber is usually referred to as photon recy-

cling and leads to a homogenization of the carrier distribution. Incorporation of the

abovementioned processes in a numerical model results in four coupled differential

equations to be solved, namely, the Poisson equation Δϕ = −ρ/ε - relating the

electrical potential ϕ to the space charge ρ and the dielectric constant ε - and three

continuity equations, one for the exciton concentration χ given by

Dχ
d2χ

dx2
=

χ

τD

+
χ

τr

− Rχnp − Gχ (4.1)

one for the electron concentration n

Dn
d2n

dx2
+ Fμn

dn

dx
= − χ

τD

+ Rχnp (4.2)

and one for the hole concentration p

Dp
d2p

dx2
− Fμp

dp

dx
= − χ

τD

+ Rχnp (4.3)

Here, Rχ is the recombination rate of free carriers leading to the creation of

excitons, τD is the bulk dissociation lifetime of the excitons, τr is the radiative lifetime

of the excitons, F is the electric field, μχ/n/p the mobilities and Dχ/n/p = μχ/n/pkT/q

the diffusion constants according to Einstein’s equation, where kT/q is the thermal

voltage. Note that an electrical field is present only in case of a pin-junction as

sketched in Fig. 4.1a whereas we have no electric field in the bulk of the absorber

of a pn-junction device (Fig. 4.1b).

Equations (4.1-4.3) already contain the detailed balance relations between the

different processes, meaning that the rates are connected to the equilibrium concen-

trations χ0, n0 and p0 of excitons, electrons and holes by the fact that the probability

of every process must equal that of its inverse process in thermodynamic equilibrium.

Now, I again have to introduce the detailed balance relation between radiative re-

combination and photogeneration. For our case, namely the absorption of excitons,

the van Roosbroeck-Shockley equation [48] yields

χ0/τr =

∫
αχ(E)φbb(E)dE, (4.4)

where αχ(E) denotes the absorption coefficient resulting from the generation of

excitons, E the photon energy, and φbb(E) the black body radiation. Detailed
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Fig. 4.1: Scheme of the (a) pin-junction device and the (b) pn-junction device. For

both types the photogenerated exciton can be either split in the bulk (bipolar case) or

at the junction (excitonic case) of the device.

balance between dissociation and recombination of excitons and electron/hole pairs

leads to

Rχn0p0 = χ0/τD (4.5)

Similarly, at the front or the back surface I allow for dissociation of an exciton

into an electron in the respective junction and a hole that remains in the bulk of
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the absorber, as well as the complementary process, dissociation into a hole in the

junction and an electron in the bulk. The rates for this type of charge separation

that is thought to be the dominant one in excitonic solar cells are determined by

the detailed balance relations

Hnnj0pb0 = Sχnχ0 (4.6)

and

Hpnb0pj0 = Sχpχ0 (4.7)

where Hn/p are the cross recombination rates of electrons/holes in the junction

with holes/electrons in the bulk of the absorber. The equilibrium concentrations of

electrons and holes in the bulk/junction are denoted by nb/j0, pb/j0 and the dissoci-

ation velocities for the excitons by Sχn, Sχp. In the non-equilibrium situation, this

interface dissociation/recombination process defines the boundary condition for the

diffusion equation, Eq. (4.1). Assuming that at the left contact (see Fig. 4.1) the

dissociation of an exciton leads to an electron in the junction and a hole in the bulk,

the exciton current density jχ reads

jχ = Hnnjpb − Sχnχ (4.8)

Accordingly, at the right contact only dissociation of an exciton into a hole in

the junction and an electron in the bulk is allowed. Thus, we have

jχ = −Hpnbpj0 + Sχpχ (4.9)

Since at the left contact the dissociation of an exciton leads to the generation

of a hole in the bulk, we have here the boundary condition for holes

jp = −Hnnjpb + Sχnχ (4.10)

For electrons, I consider at this contact the possibility of extraction and injec-

tion to obtain

jn = S∗

nnj − Snnb (4.11)

where the rate constants Sn, S∗

n have the dimension of a (collection or injection)

velocity and are interlinked by the requirements of detailed balance via

S∗

nnj0 = Snnb0 (4.12)
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At the right contact we have the for symmetry reasons

jn = Hpnbpj0 − Sχpχ (4.13)

and

jp = −S∗

ppj + Sppb (4.14)

with

S∗

ppj0 = Snpb0 (4.15)

Note that, for simplicity I assume throughout this chapter that only the elec-

tron contact at the left is active in dissociating excitons. Accordingly, I set Hp = 0

and Sχp = 0 such that I get jχ = jn = 0 at the right contact because of Eqs. (4.9)

and (4.13).

4.2.2 pn-type and pin-type solar cells

Figures 4.1a,b schematically show a pin-junction (a) and a pn-junction device (b)

with a sketch of both, the excitonic as well as the bipolar photocurrent collection

pathway. For the pin-junction device the absorber material is embedded between

the p-type and the n-type contact. Thus, the fundamental capacitor that serves to

electrostatically accommodate the open circuit voltage [63] is defined by the entire

device. The built in potential difference between the electron and hole contact in

the pin-type device is given by

Vbi = Vbi,0 − V (4.16)

where V is the applied voltage and Vbi,0 is the equilibrium built in voltage. Equation

(4.16) implies that application of a voltage V reduces the potential between the left

and right edge of the absorber and the electrical field F in the absorber. The reduced

field then leads to an injection of electrons via the left contact and of holes via the

right contact without a change of nj or pj from their equilibrium values nj0 and pj0

in Eqs. (4.11) or (4.14). A part of the holes injected from the right contact arrive

at the left contact where their increased concentration pb triggers the generation of

excitons [Eq. (4.8)].



4.3 RESULTS 69

In contrast, for the pn-junction the external voltage builds up across the space

charge region which is here put outside the absorber (cf. Fig. 4.1b). The concen-

tration nj of electrons provided by the junction then follows the applied voltage V

exponentially, i.e.,

nj = nj0 exp(qV /kT ) (4.17)

This increased number nj of electrons provided by the junction triggers now both,

the generation of excitons at the interface, via Eq. (4.8), as well as the injection of

electrons, via Eq. (4.11).

4.3 Results

4.3.1 Excitonic and bipolar photocurrent

For all following simulations, I use a set of constant parameters, which are a thickness

d = 300 nm, the absorption coefficient of ZnPc as a typical organic absorber material

(taken from Fig. 4 in Ref. [97]), an optical generation profile and a photon recycling

scheme calculated according to Ref. [33] that both result from a Lambertian cell

surface, an intrinsic carrier concentration ni = 103 cm−3 and an equilibrium built in

voltage of Vbi,0 = 1.3 V. Assuming a radiative lifetime of τr = 200μ s, the equilibrium

concentration of excitons follows from Eq. (4.4) as χ0 = 4.4× 10−3 cm−3. The other

parameters, especially the mobilities and the dissociation lifetime are varied in the

following simulations.

First, I want to show that a continuous transition from predominantly bipolar

transport to predominantly excitonic transport is possible, when varying the cou-

pling between excitons and free charge carriers defined by the dissociation lifetime

τD. Since I am only interested in the dominant charge separation mechanism, I

focus first on the short circuit situation. Because I assume only the left contact

(x = 0) to be active in exciton dissociation, the total current equals the hole current

jp(d) = jχ(0) + jn(0) at the right contact (x = d) as defined by Eq. (4.14). In order

to be able to distinguish between electron current and excitonic current, I need to

define the currents at the absorber side of the electron contact, i.e. at x = 0+. I dis-

tinguish between electrons injected into the contact from the reservoir of electrons

in the absorber and electrons injected into contact, following a dissociation of an
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Fig. 4.2: Short circuit current density as a function of the bulk dissociation lifetime

τD for the case of a (a) pin-type and (b) pn-type device. Efficient coupling of excitons

to charge carriers - i.e. low τD - leads to bipolar transport, while an inefficient

coupling forces the current to be transported by excitons to the contact. Since the

electron contact is the only interface active for dissociation of excitons, the sum

of electron current Jn (flow of electrons injected from the absorber into the front

contact) and the exciton current Jχ (flow of electrons injected from the absorber

by interface dissociation of an exciton) always equals the hole current Jp (flow of

holes injected from the absorber into the back contact). The parameters used are

(a) μχ,n,p = 103 cm2 V−1 s−1, Sn = Sχn = 106 cm s−1 and (b) μχ = 10−1 cm2 V−1 s−1,

μn = μp = 104 cm2 V−1 s−1, Sn = 1010 cm s−1 and Sχn = 50 cm s−1.

exciton. The former is denoted as electron current jn(0
+) = S∗

nnj − Snnb [see Eq.

(4.11)] and the latter as exciton current jχ(0+) = Hnnjpb − Sχnχ [see Eq. (4.8)].

Figure 4.2 shows how a variation of the dissociation lifetime in the range

10−4 s > τD > 10−10 s for the case of a pin-type cell (Fig. 4.2a) and a pn-type

cell (Fig. 4.2b) affects the excitonic and bipolar contribution to the photocurrent.
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Figure 4.2a shows that for a short dissociation lifetime τD < 10−8 s, the solar cell

behaves like a classical pin-type device, where the exciton is split into free carriers

already in the volume of the absorber. These free carriers then travel via drift-

diffusion transport to their respective contacts, where they contribute to jn(0
+) and

jp(d). In order to achieve this bipolar transport, exciton dissociation and transport

of free carriers must be faster than exciton diffusion and interface dissociation and

faster than exciton recombination. Since, I chose our equilibrium concentrations

such that ni >> χ0 holds, for high mobilities μχ,n,p = 103 cm2 V−1 s−1 and high

interface dissociation and collection velocities Sn, Sχ,n > 105 cm s−1 of free carriers

and excitons, free carriers will always be able to carry larger currents. In contrast,

for dissociation lifetimes τD > 10−5 s interfacial exciton dissociation is responsible

for the total current at the electron contact, i.e. energy transport via excitons

is now more efficient than the slow bulk dissociation with subsequent fast bipolar

transport. This limit corresponds to the situation of an ’excitonic’ solar cell as

defined by Refs. [28,29].

The situation for the pn-type solar cell in Fig. 4.2b is qualitatively very similar.

There is also a transition from the bipolar to the excitonic operation mode visible

with an intersection between both contributions at dissociation lifetimes around

τD = 2×10−7 s just like for the pin case. However, there are two distinct differences:

The first is the larger extension of the transition region and the second is that the

mobilities had to be changed compared to the pin-type case. For equal and high

mobilities of both excitons and free carriers, as was the case for Fig. 4.2a, the

whole current would have been transported by excitons, no matter how fast they

dissociate. This becomes obvious, when considering that although ni >> χ0 holds,

the concentration of minority carriers n2
i /NA = 1.2 × 10−5 cm−3 << χ0, where

NA is the acceptor concentration. Note that I chose the doping for the pn-type

cell such that the voltage, where minorities (electrons) become equal to the doping

concentration, corresponds to the built-in voltage Vbi,0 = 1.3 V for the pin-case,

which was chosen to be just above the radiative open circuit voltage. Since there

are more excitons than minority carriers available to transport the energy, I needed

to make the mobilities and/or the interface dissociation velocities unequal to get a

transition from excitonic to bipolar transport. Thus, I chose μχ = 10−1 cm2 V−1 s−1,

μn = μp = 104 cm2 V−1 s−1, Sn = 1010 cm s−1 and Sχ = 50 cm s−1 in Fig. 4.2b. Note
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that in case of the pin-type solar cell (Fig. 4.2a), the choice of the dissociation and

collection velocities does not affect the photocurrent and its distribution into Jχ and

Jn as long as Sn, Sχn > 105 cm s−1.

Besides the coupling constant τD between excitons and free carriers, also the

equilibrium concentrations of excitons and free carriers affect the dominant charge

separation pathway. Note that the ratio between those equilibrium concentrations

is determined by the binding energy EB of the exciton. In order to keep the energy

Eexc of the excitons and, therefore, the overall absorptance as well as the maximum

short circuit current constant I shift the energy EC by a relative amount δEC as

illustrated in Fig. 4.3a. A lowering of EC at constant Eexc means that the binding

energy of the exciton becomes EB smaller and vice versa.

Figure 4.3b shows a simulation, where the conduction band edge and con-

sequently the equilibrium concentration of electrons in the volume of the device

varies. Note that the conduction band at the contact is not changed, in order to

avoid intermixing of additional effects due to enhanced or deteriorated extraction of

excitons and carriers at the contact. If the conduction band is lifted up, the equilib-

rium concentration of electrons is diminished and thus, the photocurrent becomes

predominantly excitonic. In contrast, when the conduction band energy is lowered,

there are more electrons in the absorber available to carry the current and thus, the

balance shifts in direction of the bipolar current.

4.3.2 Current/voltage curves

Starting with the limit of high mobilities, I want to discuss how imperfect trans-

port affects the shape of the J/V -curve and deteriorates solar cell parameters like

short circuit current density Jsc and fill factor FF . Since our model describes both

excitonic and bipolar solar cells, I will discuss both the excitonic as well as the

bipolar limit defined by Fig. 4.2a. For our calculations, I will focus on the case of

pin-type solar cells, since they show specific non-linear features that would be lost

if I restricted myself to pn-type solar cells.

I will discuss two different combinations of parameters, as summarized in Table

4.1. Both configurations A and B are normal pin devices where both excitonic and

bipolar transport is possible. Configuration A is a device with slow coupling between



4.3 RESULTS 73

Fig. 4.3: (a) Band diagram showing that a relative shift δEC of the conduction

band is equivalent to a change in exciton binding energy EB. (b) Variations of the

short circuit current density resulting from the relative shift δEC of the conduction

band for the free electrons in the volume for the case of a pin-type device. Shifting

the conduction band leads to a change in electron equilibrium concentration n0 and

thus - for constant Rχ = 4.4 × 10−2 cm3s−1 and χ0 - to a change in the dominating

transport mechanism. Note that the choice of Rχ leads to τD = 10−7 s for δEC = 0,

such that direct comparison is possible with Fig. 4.2a. Shifting the conduction band

up, lowers n0 and makes transport via excitons become more favorable. In order

not to affect the extraction of excitons and carriers at the contacts and the built-in

voltage, the equilibrium concentration in the contacts are not changed and mark the

zero position in the δEC-axis.
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Tab. 4.1: Mobilities μn,p of free carriers and μχ of excitons as well as the bulk

dissociation lifetime τD for the two discussed configurations of non-ideal solar cells.

cfg. A cfg. B

carrier mobility μn,p [ cm2( V s)−1] 103 0.1 − 103

exciton mobility μχ [ cm2( V s)−1] 10−8 − 103 10−5

dissociation lifetime τD[ s] 10−4 10−10

excitons and free carriers (τD = 10−4 s), where I want to focus on the effect of small

exciton mobilities. Configuration B is a mainly bipolar device with an efficient

coupling of excitons and free carriers, where I want to investigate the effect of low

bipolar mobilities.

Figure 4.4 shows simulated current/voltage curves for configuration A, i.e. a

solar cell with a fixed electron and hole mobility μn/p = 103 cm2( V s)−1 and a fixed

dissociation lifetime τD = 10−4 s. This long dissociation lifetime corresponds to a

situation that is excitonic for high mobilities as shown in Fig 4.2a. The solid line

corresponds to an exciton mobility μχ = 10−5 cm2( V s)−1, while the dashed and

the dotted line correspond to an exciton mobility μχ = 10−1 cm2( V s)−1 (dashed)

and μχ = 10−7 cm2( V s)−1 (dotted). I.e., every absorbed photons contributes one

elementary charge to the short circuit current and the radiative losses are given by

the equation for J0,SQ [Eq. (2.35)]. For lower mobilities, the decreased collection of

excitons leads to the situation where the quantum efficiency becomes smaller than

the absorptance and both J0,rad and Jsc decrease. The open circuit voltage as well

as the fill factor remain almost unaffected by the change of exciton mobility.

A more detailed analysis of the short circuit current density Jsc (solid line)

and the contributions to the current density Jn and Jχ from electrons (dashed line)

and excitons (dotted line) is depicted in the inset as a function of exciton mobility.

Starting from the high mobility limit μχ > 10−1 cm2( V s)−1, a decreasing exciton

mobility leads to a decrease in Jχ, which is partly compensated by an increase in

Jn, leading to a saturation of Jsc for low exciton mobilities μχ.

Figure 4.5 shows a simulation of configuration B, i.e. a pin-type device with

a fixed exciton mobility μχ = 10−5 cm2( V s)−1 and a fixed dissociation lifetime
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Fig. 4.4: Simulation of current/voltage curves for a solar cell with a fixed electron

and hole mobility μn,p = 103 cm2( V s)−1 and a fixed dissociation lifetime Dχ = 10−4 s

(cfg. A in table 4.1). The parameter is the exciton mobility μχ = 10−1, 10−5,

10−7 cm2( V s)−1, which leads to a decrease in short circuit current, while keeping

the fill factor the same. In the inset, the short circuit current density Jsc (solid line)

and the contributions to the current density Jn and Jχ from electrons (dashed line)

and excitons (dotted line) are depicted as a function of exciton mobility. Starting

from the high mobility limit μχ > 10−1 cm2( V s)−1 a decreasing exciton mobility

leads to a decrease in Jχ, which is partly compensated by an increase in Jn, leading

to a saturation of Jsc for low exciton mobilities μχ.

τD = 10−10 s. At high mobilities of free carriers (μn,p ≥ 103 cm2( V s)−1), this fast

dissociation lifetime corresponds to a bipolar photocurrent at short circuit as shown

in Fig. 4.2a. Here, I vary the carrier mobility μn,p = 100, 101, 103 cm2( V s)−1. The

decreasing carrier mobility μn,p, leads to a decay in fill factor and in short circuit

current density Jsc. However, in contrary to configuration A (Fig. 4.4), the fill factor

loss is by far more dominant than that in Jsc. This is because for low charge carrier

mobilities in pin-type solar cells, the effect of the built-in field becomes decisive.
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Since the charge carriers, unlike the excitons, react on the decrease of the built-in

field resulting by application of forward bias voltage V , the photocurrent decreases

with increasing V . The voltage dependence of carrier collection reduces the fill

factor. Therefore, the fill factor is strongly influenced by the carrier mobilites μn,p

although the open circuit voltage is not dependent of μn,p in. Fig. 4.5.

Figure 4.6 summarizes the effects of either low exciton or low electron and hole

mobilities on the short circuit current density Jsc and fill factor FF of configurations

A and B. Figures 7a,b show that the fill factor loss shows up at mobilities μn,p <

102 cm2( V s)−1, while a loss in Jsc starts only for much lower mobilities μn,p <

100 cm2( V s)−1. This is because the voltage dependence of the carrier collection

probability from the 300 nm thick absorber layer shows up at high forward bias

voltage V first (leading to FF losses) before at even lower μn,p also carrier collection

at V = 0 is diminished (leading to losses in Jsc).

Figures 4.6c,d show the effect of decreasing exciton mobility μχ, while keeping

electron and hole mobilities at a high value of μn,p = 103 cm2( V s)−1. For the

photocurrent of cfg. A as a function of exciton mobility, I obtain the result, which

was already depicted in the inset of Fig. 4.4, namely a decrease of photocurrent for

decreasing exciton mobilities μχ < 10−3 cm2( V s)−1. This decline saturates at a level

of about 83% of the maximum Jsc. This plateau results from the fact that the loss in

excitonic current is partly compensated by an increase of electron and hole current.

The fill factor as shown in Fig. 4.6d is independent from the exciton mobility. This

finding is expected because changes in the electrical field cannot alter the collection

of excitons. As a result the decline of photocurrent is voltage independent.

4.3.3 Electroluminescence and quantum efficiency

For the two different parameter configurations of Table 4.1, I investigate the validity

of the reciprocity theorem defined by Eq. (2.33). Figure 4.7 illustrates the meaning

of Eq. (2.33): The electroluminescence (EL) emission simulated with the model

described above, allows us to derive the quantum efficiency via Eq. (2.33) from

it. For the case of high mobilities the quantum efficiency derived from EL (solid

line) agrees with the directly simulated quantum efficiency (open circles). Thus,

for perfect transport both excitonic and bipolar solar cells follow the reciprocity
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Fig. 4.5: Simulation of current/voltage curves for a solar cell with a fixed

exciton mobility μχ = 10−5 cm2( V s)−1 and a fixed dissociation lifetime τD =

10−10 s (cfg. B from table 4.1). The parameter is the carrier mobility μn,p =

100, 101, 103 cm2( V s)−1, which leads to a decrease in fill factor, while keeping the

short circuit current roughly the same. The solid line corresponds to the parameter

configuration B from Table 4.1. In the inset, the fill factor FF is depicted as a

function of the carrier mobility μn,p.

theorem, no matter whether the device is built as pin-type or pn-type device.

Proceeding now to less ideal devices, I investigate under which circumstances

the reciprocity relation begins to loose its validity. Figure 4.7 also shows the EL

spectrum (dotted line), the quantum efficiency calculated from the EL spectrum

via the reciprocity theorem (dotted) and the quantum efficiency (open triangles) of

the solar cell with parameter configuration A and a low exciton mobility (μn,p =

103 cm2( V s)−1, μχ = 10−5 cm2( V s)−1, τD = 10−4 s). Since this configuration leads

to a relatively constant photocurrent and ideal recombination current, as shown by

the mobility independent fill factor in Figs. 4.4 and 4.6d, also the reciprocity is

valid.
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Fig. 4.6: Summary of the effects of reduced bipolar and excitonic mobilities on short

circuit current density Jsc and fill factor FF . In (a) and (b) I used the parameters

for cfg. B except for the electron and hole mobility μn,p which is varied. I find a

considerable decrease of fill factor for mobilities μn,p < 102 cm2( V s)−1, while a loss

in Jsc starts only for even lower mobilities μn,p < 100 cm2( V s)−1. In (c) and (d), I

used the parameters for cfg. A , except for the varied exciton mobility. For cfg. A,

Jsc is reduced for exciton mobilities μχ < 10−3 cm2( V s)−1, while the fill factor stays

unaltered, since the electron and hole mobilities are high enough to warrant voltage

independent collection.

Figure 4.8 summarizes the validity of the reciprocity theorem by comparing

the directly simulated quantum efficiency Qe,dir (diamonds) and the quantum effi-

ciency Qe,EL calculated from the simulation of the EL (solid lines) for the case of

configurations A and B. For cfg. A, as shown in Fig. 4.8a, the electron and hole mo-

bilities are high and thus the reciprocity is valid, although the quantum efficiency is

below unity in the saturation regime. Voltage-independent collection and injection

of carriers at high bipolar mobilities thus implies both high and constant fill factors
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Fig. 4.7: Quantum efficiency (symbols), EL spectrum and quantum efficiency cal-

culated from the EL according to Eq. (2.33) for two cells that belong to cfg. A: an

ideal cell with high carrier mobilities (solid lines) and a cell with a lower carrier mo-

bility μχ = 10−5 cm2( V s)−1 (dotted line). For both devices the reciprocity theorem

is valid.

(see Fig. 4.6d) and the validity of the reciprocity relation (Qe,dir = Qe,EL).

Figures 4.8b shows that for cfg. B, the reciprocity is no longer valid (Qe,dir �=
Qe,EL). We learned from Figs. 4.5 and 4.6b that a mobility of μn,p = 10 cm2( V s)−1

already leads to a small fill factor loss of around ΔFF = 3% compared to the high

mobility case. In consequence, I also find a small deviation of quantum efficiency

Qe,dir (diamonds) and quantum efficiency Qe,EL from EL (solid line), as shown in Fig.

4.8b.

Note here that the voltage dependency of collection and thus injection makes

the EL spectrum become a function of applied voltage. The voltage used for all EL

spectra in Figs. 4.7 and 4.8 is V = 1 V. Using higher (lower) voltages would increase

(decrease) the difference between direct quantum efficiency simulated at V = 0 V

and quantum efficiency calculated from EL.
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Fig. 4.8: Simulation of the quantum efficiency Qe,dir (diamonds) compared with the

simulation of the electroluminescence spectrum, from which the quantum efficiency

Qe,EL (solid line) is calculated using Eq. (2.33), for the case of (a) configuration A

and (b) configuration B. For case (a), the electron and hole mobility are high (μn,p =

103 cm2( V s)−1) and thus collection and injection of carriers is voltage independent

and the reciprocity is valid. For case (b), the low bipolar mobility leads to a small

deviation between Qe,dir and Qe,EL.



Chapter 5

Detailed balance model for bulk

heterojunction solar cells

The previous chapter 4 discussed excitonic solar cells, which mostly means that the

absorber consists of a material with a high binding energy like an organic polymer

or small molecule. In addition to the inclusion of excitons to the energy transport,

organic solar cells usually have a different device geometry than standard inorganic

solar cells. This device geometry is called bulk heterojunction. In this chapter, I will

discuss how to implement such devices into my model.

5.1 Introduction

In recent years, several new technological approaches have emerged in the field of

thin film photovoltaics, some of them, like the organic bulk heterojunction (bhj)

cell [7–9, 12], using totally new types of device geometries. These new geometries

require approaches for modeling and simulation of the devices that go beyond those

used for standard inorganic device simulators. Consisting of a blend of two materi-

als with different electron affinities, organic, inorganic [23] as well as hybrid [24,25]

bhj type devices require essentially two new aspects to be added to the standard

ingredients of inorganic solar cell modeling: These are the incorporation of the

multi-step charge separation process, starting with the creation of excitons rather

than free electron/hole pairs [28, 29], as well as the network of donor/acceptor in-

terfaces needed to split the photogenerated exciton. Incorporating these effects in

81
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an electrical model either leads to complex and detailed microscopical models [98]

or continuum approaches [99–101] that use effective parameters in order to be com-

putationally more efficient. Some effective medium models, like the one proposed

by Koster et al. [102], allow the description of generation and recombination of free

charge carriers via excitons and bound electron/hole pairs as a modification of the

standard generation and recombination rates, while not changing the form of the

carrier continuity equations compared to the standard inorganic case.

Not only electrical but also optical modeling [103–105] has recently come to

the focus of research on polymer cells, for instance leading to a better interpreta-

tion of quantum efficiencies [106, 107] or allowing the determination of design rules

for optical spacers [108]. The requirements for optical simulations differ not much

between inorganic and organic thin film solar cells. The most important aspect is

the ability to consider interferences in thin layers, which is usually accomplished by

a matrix transfer formalism.

This chapter introduces an effective electrical model for bhj solar cells that is

compatible with the one dimensional continuity equations for electrons and holes

and with the principle of detailed balance. The model takes into account exciton

transport, dissociation as well as the field and temperature dependent dissociation

of a bound electron/hole pair. The widely used [109–114] model of Koster et al.,

taking into account only the bound pair but not the exciton diffusion, is a special

case of our model. I combine my model for the generation of free carriers in bhj-

solar cells with the device simulator ASA , which is able to calculate the generation

rate of excitons with a thin film optics approach. The result is an electro-optical

simulation program able to calculate, e.g. current/voltage(J/V ) curves, external

and internal quantum efficiencies, reflectance and transmission spectra, as well as

the band diagram, carrier concentrations and electric fields in the device. As an

example for the applicability of our model, I show how to reproduce absorptance,

quantum efficiency and current/voltage characteristics of a polymer/fullerene device

described in literature [106].
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5.2 Model

5.2.1 Charge separation scheme

An electrical model suitable for bulk heterojunction solar cells needs to consider a

multi-step process of current generation. Figure 5.1 schematically shows the path

leading from an absorbed photon to the final carrier separation at the contact. In

contrast to the case of inorganic solar cells, where the generation of free carriers

directly follows photon absorption, in an organic solar cell an exciton is created

first. Since both the exciton diffusion length and the dissociation rate of excitons

in free carriers are too low for efficient charge separation in a bilayer geometry ,

the organic devices must be built up of an intimate blend of two materials. Now,

the exciton has to diffuse only to the next junction between the blended materials

and not directly to one of the device contacts. At the junction, the exciton is split

into an electron (e) and hole (h), which are now in different phases depending on

the band offsets at the junction. In the example presented in Fig. 5.1, the hole

remains in the absorber material, which may be a polymer, while the electron is

injected into the material with the higher electron affinity, which is usually formed

by a C60-derivative. The electron and hole on either side of the interface are still

coloumbically bound to each other. Only after this bound electron/hole (e/h) pair is

split into free carriers, the bipolar drift-diffusion transport leads to the final charge

separation at the contacts. Figure 5.2 shows how the mechanism, illustrated in Fig.

5.1, fits into the charge separation scheme of the complete device. At each point of

the pin-type device, a heterojunction exists, where the processes in Fig. 5.1 lead to

the creation of free carriers.

5.2.2 Differential equations for free carriers

The scheme in Fig. 5.1 shows that there are two steps of charge separation and two

steps of transport necessary to achieve a photocurrent. Thus, a suitable model needs

to include properties of excitonic and bipolar transport, as well as properties of the

splitting of the exciton and bound e/h-pair and those relevant for the final charge

separation. Let us start with those parts of the model I can adopt from inorganic

photovoltaics.
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Fig. 5.1: Sketch of the photoconversion process in bulk heterojunction solar cells.

The photon creates an exciton, which has to diffuse to the next donor/acceptor in-

terface, where it is split into a bound e/h-pair. This e/h-pair will then dissociate

and form free charge carriers which are transported to the contacts.

For the simplest case of direct band to band recombination, the drift diffusion

equations for the electron concentration n and the hole concentration p are given by

−1

q

dJn

dx
= −Dn

d2n

dx2
− Fμn

dn

dx
= G − krecnp (5.1)

1

q

dJp

dx
= −Dp

d2p

dx2
+ Fμp

dp

dx
= G − krecnp (5.2)

where Jn and Jp are the electrical electron and the hole current densities, Dn,p =

μn,pkT/q is the diffusion constant of the electrons and holes which depends on the

electron and hole mobilities μn and μp and on the thermal voltage kT/q. For inor-

ganic solar cells, the coupled solution of Eqs. (5.1, 5.2) is sufficient for obtaining the

carrier concentrations and subsequently the currents. In bhj solar cells, however, the

properties of the generation process of free carriers at each grid point, as depicted in

Fig. 5.2, must be included to interpret the generation rate G and the recombination

constant krec as quantities depending on exciton diffusion and dissociation.

5.2.3 Balance equation for bound carriers

Figure 5.3 depicts the transition rates from the four possible states, photon, exci-

ton χ, bound e/h-pair ξ and free e/h-pair. The system consists of four pairs of

rates that connect the states with each other. These are (i) the generation and



5.2 MODEL 85

Fig. 5.2: Sketch of the whole device to be simulated. At each grid point of a

standard pin-junction solar cell, diffusion and dissociation of the exciton as well as

dissociation of the bound e/h-pair precedes the creation of free e/h-pairs.

recombination of excitons, (ii) the dissociation of excitons forming a bound e/h-pair

and the recombination of bound pairs forming an exciton, (iii) the decay of bound

pairs to the ground state and the creation of bound pairs, and (iv) the dissociation

of bound pairs forming free carriers and the recombination of free carriers forming

bound e/h-pairs. Due to the principle of detailed balance each process must be in

equilibrium with its inverse process if the system is in thermodynamic equilibrium.

This law allows us to eliminate one of the rate constants for each pair if I introduce

the equilibrium concentrations for excitons χ0, bound e/h-pairs ξ0 and the intrinsic

carrier concentration ni for free e/h-pairs. For the generation and recombination of

the exciton, the equilibrium generation Geq
opt = χ0/τr, where τr is the lifetime. The

coupling of excitons and bound pairs leads to the relation SDχ0 = SRξ0, where SD

is the dissociation and SR the recombination velocity. Expressing the recombina-

tion velocity in terms of the dissociation velocity, allows us to write the net particle
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Fig. 5.3: The model for modification of generation and recombination rates at each

grid point in the devices includes three states of the excitation, the exciton, the bound

e/h-pair and the free e/h-pair. All states are connected by detailed balance rates. In

addition excitons may be optically generated and excitons and bound e/h-pairs may

recombine.

current density between excitons and bound pairs as

jξ↔χ = SD

(
ξ

ξ0

χ0 − χhj

)
, (5.3)

where χhj is the concentration of excitons at the heterojunction between the donor

and acceptor phase. The decay of bound pairs to the ground state must again lead

to a zero net generation rate of bound pairs in thermodynamic equilibrium. Thus,

the net recombination current density is

jξ,rec = kfξ0

(
ξ

ξ0

− 1

)
, (5.4)

where kf is the rate constant for the decay. The exchange between bound and free

electron hole pairs leads to the balance between dissociation and recombination. I

express the dissociation constant kdiss = krecn
2
i /ξ0 as a function of the recombination

constant krec and receive for the net current density

jnp↔ξ = krec

(
np − ξ

ξ0

n2
i

)
(5.5)

What we finally need, in order to compute the effective generation and recombination

rates of the coupled processes shown in Fig. 5.3, is the result of Eq. (5.5), however
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Fig. 5.4: Scheme of the coordinate system used for the analytical solution of the

exciton diffusion equation. The generation rate is assumed to be constant over the

width w between two donor/acceptor interfaces.

independent of the concentration of excitons χ and bound pairs ξ. In order to

eliminate ξ in Eq. (5.5), I enforce current continuity between the current densities

defined in Eqs. (5.3-5.5), leading to a balance equation

jnp↔ξ−jξ↔χ−jξ,rec = krec

(
np − ξ

ξ0

n2
i

)
−SD

(
ξ

ξ0

χ0 − χhj

)
−kfξ0

(
ξ

ξ0

− 1

)
. (5.6)

5.2.4 Differential equation for excitons

To obtain the effective generation and recombination rate of free carriers, I need to

calculate the solution of Eq. (5.5), i.e. the net current jnp↔ξ, which requires the

knowledge of each component of Eq. (5.6). Let us start with the contribution from

the excitons, i.e. SDχhj. In order to include exciton transport and dissociation I

need to add another dimension to our originally one dimensional problem. Later,

I will show that analytically solving the differential equation for excitons allows

us to calculate effective modifications of the one-dimensional differential equations

for free carriers, thereby circumventing the need for solving the coupled differential

equations in two- or three dimensions.

To include exciton diffusion to the next interface, I solve the one dimensional

diffusion equation for the exciton concentration χ

0 = Dχ
d2

dy2
χ − χ

τr

+ Gopt (5.7)

in a new coordinate system as depicted in Figs. 5.2 and 5.4. The generation rate
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Gopt = Geq
opt +Gexc

opt is now the actual optical generation rate as calculated by a trans-

fer matrix approach and consists of a contribution from the black body radiation of

the environment and an contribution due to excess illumination. In addition, τr is

the lifetime of excitons and Dχ is the exciton diffusion constant. I assume that the

generation rate is independent of the coordinate y, while interferences and damp-

ing are taken into account for the coordinate x. The boundary conditions for the

particle currents at the interfaces are assumed to be symmetric

jξ↔χ = ±Dχ
d

dy
χ = SDχ0

ξ

ξ0

− SDχ (5.8)

for y = ±w/2, where w is the distance between two interfaces. The solution for the

exciton concentration is

χ = (Ar + Ag) [cosh (y/Lχ)] + Goptτr (5.9)

where Lχ =
√

μχτrkT/q. Equation (5.9) superimposes two contributions to the

exciton population, namely the optical generation, proportional to the exciton gen-

eration rate Gopt

Ag =
−SDGoptτr

Sχ cosh (w/2Lχ) + Dχ/Lχ sinh (w/2Lχ)
(5.10)

and the injection and extraction of excitons via the coupling to the bound e/h-pairs

?

Ar =
SDχ0ξ/ξ0

Sχ cosh (w/2Lχ) + Dχ/Lχ sinh (w/2Lχ)
(5.11)

which is thus proportional to ξ/ξ0.

Now, the solution for the exciton concentration as a function of y enables us

to calculate the current jξ↔χ, describing the exchange between bound pairs and

excitons. For each domain with length w/2, the current jnp↔ξ is defined by Eq.

(5.8). The current jξ↔χ = jg + jr consists of two contributions, one due to the

photogeneration of excitons

jg = −SDχg = −SDGoptτrβ (5.12)

and one due to the injection of bound e/h-pairs

jr = SD

(
ξ

ξ0

χ0 − χr

)
= SDχ0

ξ

ξ0

β (5.13)
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In Eqs. (5.12) and (5.13), I used the abbreviations

β =
Dχ

Lχ

sinh (w/2Lχ)

SD cosh (w/2Lχ) + Dχ/(Lχ) sinh (w/2Lχ)
(5.14)

the concentration of excitons at the interface due to photogeneration of excitons

χg = Ag cosh

(
w

2Lχ

)
+ Goptτr = Goptτrβ (5.15)

and the concentration due to injection of bound pairs

χr = Ar cosh

(
w

2Lχ

)
= χ0

ξ

ξ0

(1 − β) (5.16)

Finally, the result for the current defined in Eq. (5.3) is

jξ↔χ = SD

(
ξ

ξ0

χ0 − χhj

)
= SDβ

(
ξ

ξ0

χ0 − Goptτr

)
(5.17)

5.2.5 Effective generation and recombination rates

In order to determine the current density and therewith the effective generation

and recombination rate, I need to calculate the concentration of bound pairs. The

balance equation for bound pairs, Eq. (5.6), leads to

ξ

ξ0

=
SDβGoptτr + krecnp + kfξ0

SDβχ0 + krecn2
i + kfξ0

(5.18)

in steady state. Let us briefly discuss the meaning of Eq. (5.18) by considering the

extreme cases: If either the coupling to the free e/h-pairs or the coupling to the

excitons is dominant over the other and over the non-radiative decay, the Fermi-

level - representing the ratio of concentration to equilibrium concentration - will

be equal for the two strongly coupled states. Strong coupling means a sufficiently

high rate or short lifetime that the other components of the two sums in numerator

and denominator are negligible. That means if (i) the recombination constant krec

is very high compared to the other rates, Eq. (5.18) will simplify to ξ/ξ0 = np/n2
i ,

while (ii) a high dissociation velocity SD leads to ξ/ξ0 = χhj/χ0 = Goptτr/χ0 . If (iii)

the non-radiative decay channel is dominant, ξ will approach its equilibrium value

(ξ/ξ0 = 1). Now, I insert Eq. (5.18) into Eq. (5.3) and receive

jnp↔ξ = krec

(
np − ξ

ξ0
n2

i

)
= krec

(
np − n2

i
SDβGoptτr+krecnp+kfξ0

SDβχ0+krecn2
i +kfξ0

)
= krec

(
kfξ0(np−n2

i )+SDβ([np−n2
i ]χ0−n2

i Gexc
optτr)

SDβχ0+krecn2
i
+kfξ0

)
(5.19)
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Note that I used the earlier derived relation Geq
opt = χ0/τr in order to obtain

Eq. (5.19). In general, the derivation of the particle currents jx in x-direction, i.e.

the effective generation and recombination rates depend on the particle current in

y-direction via
djx

dx
:= G̃ − R̃ =

jnp↔ξ

w/2
(5.20)

since the particle current was defined as the current coming from one domain with

width w/2. Thus, splitting the result of Eq. (5.20) in terms ∝ Gexc
opt , yields the

new effective generation rate to be inserted in Eqs. (5.1, 5.2) and those ∝ krecnp,

yields the new effective recombination rate to be inserted in Eqs. (5.1, 5.2). The

new effective generation rate is then

G̃ = Gexc
opt

krecn
2
i

SDβχ0 + krecn2
i + kfξ0

SDβτr

w/2
(5.21)

and the new effective recombination rate is

R̃ =
krec

w/2

(
np − n2

i

) (
1 − krecn

2
i

SDβχ0 + krecn2
i + kfξ0

)
(5.22)

5.2.6 Equilibrium concentration of excitons

There still remain some open questions, especially how to choose the value of krec

and how to determine the equilibrium concentrations χ0, ξ0 and ni of the different

particles. For efficient charge separation at the interface between donor and acceptor

phase, band offsets are necessary. In our model, these band offsets are implicitly

defined through the value of the equilibrium concentration of excitons χ0. For a

given density of states, the energy of the thermalized exciton is the only relevant

parameter affecting the equilibrium concentration. Thus, a high energy difference

ΔE between the LUMO (lowest unoccupied molecular orbital) of the donor and

the LUMO of the acceptor leads to efficient charge separation, which is reflected in

our model by a low χ0 and subsequently to less back transfer of bound e/h-pairs

in excitons. Since the exciton density of states is an unknown parameter, I cannot

give quantitative values for χ0 e.g. as a function of exciton energy in the polymer.

Instead, for our simulations, I chose the value of χ0 to be sufficiently low that the

back transfer of bound e/h-pairs in excitons does not lead to an efficiency decrease.

This is the case, when SDβχ0 << krecn
2
i +kfξ0 is satisfied, since for this condition, the
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mathematical expression for the recombination rate [Eq. (5.22)] is independent of

SDχ0, meaning that the recombination of free carriers does not depend on injection

and recombination of excitons.

5.2.7 Comparison with the model of Koster et al.

If I compare the results for the generation rate with the model of Koster, Smits,

Mihailetchi and Blom, which I will refer to as the KSMB-model (see Ref. [102]), I

notice that I have one factor dominated by the dissociation of the bound e/h-pair,

which is equivalent to the dissociation probability p in Ref. [102], when I choose krec

and χ0 in a certain way. To make our model compatible with the KSMB-model, I

choose

krec =
q min (μn, μp)

ε0εr

(w/2) (5.23)

according to a slightly modified Langevin recombination rate. I have to include

the domain width w/2 to ensure that [krecn
2
i ] = cm−2s−1. Since I fixed the disso-

ciation rate via detailed balance considerations, I have to modify the equilibrium

concentration for bound e/h-pairs instead, leading to

ξ0 =
4πz3n2

i exp (EB(z)/kT )

3J1

(
2
√−2b

)
/
√−2b

(5.24)

where J1

(
2
√−2b

)
/
√−2b = 1+b+b2/3+b3/18+... is the first order Bessel function,

b =
q3F

8πε0εr (kT )2 (5.25)

F is the electric field, ε = ε0εr is the dielectric constant, a is the separation distance

between the bound electron and hole and EB(a) = q2/4πεa is the binding energy of

the bound e/h-pair. Note that the definitions in Eqs. (5.24, 5.25) imply a strong

field and therefore bias dependence of bound e/h-pair dissociation, which has a

considerable influence on the fill factor of the device. Using the definitions in Eqs.

(5.23-5.25) and assuming SDβχ0 << krecn
2
i + kfξ0, the dissociation probability

pdiss =
krecn

2
i

SDβχ0 + krecn2
i + kfξ0

(5.26)

appearing in Eqs. (5.21, 5.22) is the same as in the KSMB-model.The generation

rate from Eq. (5.21) is now

G̃ = Goptpdiss2τrSD/w = G̃KSMB2τrSD/w =: G̃KSMBfc (5.27)
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and thus being a series connection of the generation rate G̃KSMB as defined by Ref.

[102] and of a collection efficiency fc, defined as the probability that a photogenerated

exciton contributes to the current. Note that we omitted the integration over a

distribution of separation distances, as carried out in Ref. 14, since it is incompatible

with the principle of detailed. Thus, the generation rate G̃KSMB represents the

generation rate from Ref. 14, without this integration

Especially for the simulation of J/V curves, the recombination rate is of high

importance. For all following simulations, I modify the recombination constant as

defined in Eq. (5.22) in the same way as the generation rate. Using the dissociation

probability for bound e/h-pairs, the recombination rate becomes

R̃ = krec/(w/2)(np − n2
i ) (1 − pdiss) , (5.28)

with Pdiss defined by Eq. (5.26). Since I assume the back reaction of bound e/h-pairs

into excitons to be weak, the recombination constant is identical to the one derived

by Ref. [102].

The generation rate G̃KSMB, which takes the dissociation of the bound e/h-pair

into account, has been extensively discussed in Refs. [102,109–113]. Therefore, I will

concentrate here on the influence of fc.

5.3 Fundamental aspects

5.3.1 Influence of the carrier mobilities and the surface re-

combination velocity

The KSMB-model has several implications for the J/V -curve and performance of

the device. Among the most prominent are the temperature and field dependence of

the photocurrent and the dependence of generation and recombination rate on the

mobility of the free charge carriers. While the field and temperature dependence of

the photocurrent have already been extensively discussed [102, 109], the influence

of the mobility on the solar cell efficiency is still under debate. Marsh, Groves and

Greenham [98], for instance, point out that high mobilities are of particular impor-

tance for organic solar cells, while Mandoc et al. [115] use the KSMB-model to show

that solar cell efficiency has a maximum for finite mobilities and decreases for higher
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mobilities. These findings lead to the question if and under which circumstances a

high mobility deteriorates device performance - in our model and in general.

For this discussion on the charge carrier mobility, let us simplify our model

in a way that the dependencies of generation and recombination rate on mobility

become apparent. Let us therefore set the exciton collection efficiency fc = 1 and

let us neglect all field dependencies. Then the generation rate is

G̃ =
Gexc

opt

w/2

(
krecn

2
i

krecn2
i + kfξ0

)
(5.29)

and the recombination rate is

R̃ =
(np − n2

i )

w/2

(
kreckfξ0

krecn2
i + kfξ0

)
(5.30)

It can be seen that both increase monotonically with krec and, thus, due to the

Langevin equation (see Eq. (5.23)) with the mobility of the slowest carrier. Although

the recombination rate increases with mobility, the ratio

G̃

R̃
=

Gexc
opt

(np − n2
i )

n2
i

kfξ0

(5.31)

is independent of krec and of carrier mobility and thus, one would not expect a

decrease in open circuit voltage with increasing carrier mobility as reported in Ref.

[115].

At this point it becomes important to consider the boundary conditions be-

tween absorber and contacts. An infinite surface recombination velocity SC as as-

sumed in Ref. [115] for the respective minorities will lead to strongly increased

recombination at the surfaces if the mobilities are high. Thus, low mobilities act

like a passivation for infinitely defective surfaces. However, infinte surface recombi-

nation is not a fundamental aspect of organic solar cells that is necessary for device

functionality but instead an additional sink for minoriy carriers, which may become

important for future device generations. Figure 5.5a shows the short circuit current

density Jsc as a function of mobility for different surface recombination velocities

SC = 0, 102, 104, 106 cm/ s and SC = ∞ which corresponds to the case discussed in

Ref. [115]. The short circuit current increases monotonically with mobility. The sat-

uration level depends on surface recombination velocity since it affects the amount

of recombination at short circuit.
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Fig. 5.5: (a) Short circuit current, (b) open circuit voltage, and (c) solar cell effi-

ciency as a function of electron mobility μn for different values of the recombination

velocity SC at the absorber/contact interface. For well passivated surfaces, the ef-

ficiency increases monotonically with mobility. Only for high recombination at the

interface, the efficiency benefits from low mobilities, since they effectively passivate

the defective surface regions. The parameters used are a constant generation rate

Gexc
opt

= 6 × 1021, an intrinsic carrier concentration ni = 3.5 × 108 cm−3, the equilib-

rium decay rate kfξ0/(w/2) = 6× 106 cm−3 s−1 for the bound pairs, a built in voltage

Vbi,0 = 1.1 V, a ratio of electron and hole mobility μn/μp = 10 and an absorber

thickness w = 100 nm.
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Fig. 5.6: Collection efficiency fc of excitons displayed as a function of the exci-

ton diffusion length Lχ normalized to the distance w between two donor/acceptor

interfaces using the exciton dissociation velocity SD as parameter. The exciton re-

combination lifetime assumed for these simulations is τr = 10μs and the average

distance between to hetero-interfaces is w = 10 nm.

Figure 5.5b shows the open circuit voltage, which decreases monotonically with

mobility if the surface is not perfectly passivated (SC = 0). Figure 5.5c shows the

efficiency as a function of mobility for different surface recombination velocities. The

simulations with SC = 0 and 102 cm/ s show a monotonous increase of efficiency with

mobility. Very high surface recombination velocities of SC = 106 cm/ s lead to a dip

in efficiency by around 1% absolute for very high mobilities. The parameters used

for the simulation in Fig. 5.5 are a constant generation rate Gexc
opt = 6 × 1021cm−3,

an intrinsic carrier concentration ni = 3.5 × 108cm−3, the equilibrium decay rate

kfξ0/(w/2) = 6 × 106cm−3s−1 for the bound pairs, a built in voltage Vbi,0 = 1.1V,

a ratio of electron and hole mobility μn/μp = 10 and an absorber thickness w =

100 nm.

In general, I conclude that a high mobility cannot be detrimental for the device

performance as long as it only influences the charge seperation path crucial for the

photovoltaic effect. Due to the principle of detailed balance, enhanced recombination
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of free carriers to bound carriers will always imply more efficient dissociation, i.e. a

better coupling between the free and the bound pairs. The higher the coupling the

smaller the losses during charge separation will be, while the fact that this coupling

also increases recombination can never lead to a performance loss.

However, increased mobilities can enhance recombination via additional (par-

asitic) pathways like high recombination at the absorber/contact interface. Thus,

passivation of such defective regions is in theory also possible by making the trans-

port towards these defective regions less likely, i.e. by decreasing the mobility.

However, such an effect is neither caused by the Langevin type recombination rate

nor is it a specific feature of organic and/or bulk heterojunction solar cells.

5.3.2 Influence of exciton diffusion on the photocurrent

Figure 5.6 shows the result of calculating fc = 2τrSD/w as a function of exciton

diffusion length Lχ normalized to the average distance w between two interfaces

and with the exciton dissociation velocity SD as a parameter. In order to have

an efficient collection of excitons, i.e. fc ≈ 1 , the transport of excitons to the

next hetero-interface between donor and acceptor phase as well as the dissociation

velocity at this interface must be high. Thus, for sufficiently high SD > 102 cm/ s

and ratios Lχ/w >> 1, the collection efficiency fc in Fig. 5.6 approaches unity.

That corresponds to the physical case, where each photogenerated exciton creates

one bound e/h-pair. For low values of the dissociation velocity SD the collection

efficiency fc saturates at a lower level for a high ratio Lχ/w >> 1. For lower ratios

Lχ/w << 1, the excitons do not reach the next interface but recombine instead. The

collection efficiency is then reduced below one even for high dissociation velocities.

The exciton recombination lifetime assumed for these simulations is τr = 10μs.

5.3.3 The role of band offsets

The open circuit voltage Voc of most real solar cells is controlled by non-radiative re-

combination at defects and interfaces. In bhj solar cells especially the non-radiative

recombination at the heterointerfaces between donor and acceptor phase is an impor-

tant loss process. As a direct consequence, the band offset ΔEC between conduction

band of donor and acceptor molecule and the morphology [116], i.e. the average
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distance w between two heterointerfaces, become decisive parameters for the effi-

ciency of the bhj solar cell. Interestingly, both parameters bear a trade-off between

optimizing dissociation of excitons, favored by low values of w and large band off-

sets ΔEC, and the minimization of recombination losses, requiring large distances

w and band offsets as small as possible. The following will provide a quantitative

treatment of these effects. Since the existence of a bound electron/hole pair ξ at the

heterointerface is not important for the following general considerations, I will only

consider excitons and free carriers.

Nevertheless, a collection efficiency can be defined just like for the case with

bound electron hole pairs. The collection efficiency depends on exciton diffusion

length Lχ, interface dissociation lifetime Sχ and interface seperation w via

fc =
2LχSχ

w

sinh (w/2Lχ)

Sχ sinh (w/2Lχ) + Dx/Lχ cosh (w/2Lχ)
(5.32)

For very high exciton diffusion lengths Lχ >> w, the collection efficiency

saturates at its maximum. This maximum is usually fc = 1, if exciton dissociation

at the interface is efficient (Sχ > 102 cm/ s). For ratios w/2Lχ < 1, the collection

efficiency decreases below its saturation level.

Let us first focus on the band offset ΔEC at the interface and assume that

the transport of excitons to the interface and the collection of electrons and holes

are efficient. Then, the short circuit current density Jsc normalized to its maximum

Jsc,SQ will be equal to the collection efficiency fc in the limit of high exciton diffusion

lengths Lχ >> w. From Eq. (5.32) follows

Jsc

Jsc,SQ

= lim
w/Lχ→0

fc =
1

1 + w/(2Sχτr)
(5.33)

In thermal equilibrium, the recombination of electrons in the acceptor phase

and holes in the donor phase equals the dissociation of excitons, leading to

Hχn0Ap0D = Sχχ0 (5.34)

where Hχ defines the recombination rate, Sχ the dissociation rate. Note that Sχ

describes the interaction between excitons and free carriers just like SD described

the interaction between excitons and bound pairs. The equilibrium concentrations

n0A and p0D of electrons in the acceptor and holes in the donor will depend on the
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band gap of the respective material. Figure 5.7 shows a scheme of the heterojunction

between donor and acceptor together with the equilibrium concentrations depending

on the conduction and valence band energy ECA and EVA in the acceptor and ECD

and EVD in the donor. If I now vary the conduction band energy ECA in the acceptor,

I will have to change the left hand side of Eq. (5.34), since n0A ∝ exp(ΔEC/kT ),

where ΔEC = ECD −ECA is the difference in conduction band energy between donor

and acceptor. If everything else is kept constant, then a high band offset ΔEC

implies a low band gap of the acceptor and, thus, a high equilibrium concentration

n0A. The validity of Eq. (5.34) requires that the dissociation rate Sχ also changes

with the band offset, since χ0 stays constant. The latter is a useful assumption

since changing χ0 would also mean that the band gap of the donor and therewith

the absorption in the solar cell would change.

Thus

Sχ = S00 exp(ΔEC/kT ) (5.35)

holds, where S00 is a proportionality factor in units of a velocity. Equation (5.35)

means that the dissociation is more efficient if the band offset is high. For the nor-

malized short circuit current density, this exponential dependence of the dissociation

velocity on the band offset implies that

Jsc

Jsc,SQ

=
1

1 + w
2S00τr

exp (−ΔEC/kT )
(5.36)

holds.

Now, I need to consider the dependence of the recombination current on the

band offset. For a device with an extremely high amount of internal surfaces as is

necessary in organic bhj solar cells, it is reasonable to assume the recombination

at these interfaces determines the recombination current. Under this assumption,

the saturation current density J0 will be proportional to the equilibrium carrier

concentrations. Since the hole concentration in the donor remains unchanged, I

write

J0 = J00 exp(ΔEC/kT ) (5.37)

with J00 being a proportionality factor with the unit of a current density. Since a

higher conduction band offset ΔEC implies a smaller band gap Eg (as defined in Fig.

5.7), the recombination increases.
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Fig. 5.7: Schematic drawing of the heterointerface between donor and acceptor in

a bhj solar cell. By varying the conduction band energy ECA of the acceptor, the

equilibrium concentration n0A of electrons in the acceptor, the band gap Eg as well as

the band offset ΔEC in the conduction band between donor and acceptor are changed.

Thus, the principle of detailed balance that led us arrive at Eqs. (5.33) and

(5.35) predicts Eqs. (5.36) and (5.37) and thus a trade-off between photocurrent and

recombination current. Figure 5.8 verifies our expectations, by showing the open

circuit voltage Voc, the normalized short circuit current density Jsc/Jsc,SQ and the

relative dependence of the product VocJsc/Jsc,SQ as a function of the conduction band

offset ΔEC. I have only two possible parameters, which change the result: The first

parameter, which is varied in Fig. 5.8a, is the product w/(2S00τr) and the second,

being varied in Fig. 5.9b, is the prefactor J00 of the saturation current density.

Both, Fig. 5.8a and b show that I obtain a maximum of the product VocJsc/Jsc,SQ

with respect to the band offset ΔEC. This maximum is in the range 0.3 eV < ΔEC <

0.5 eV mostly depending on w/(2S00τr).

5.3.4 The role of the blend morphology

The second parameter I study is the distance w between two heterointerfaces. For

the short circuit current density, I now have to abandon the assumption of efficient

transport to the interface, since the collection of excitons heavily depends on the
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Fig. 5.8: Simulation of short circuit current density Jsc (normalized to the maximum

Jsc,SQ), open circuit voltage Voc and the product VocJsc/Jsc,SQ as a function of the band

offset Ec in a bhj-solar cell using the analytical equations (39, 40). The excitonic

transport to the next heterointerface is assumed to be efficient L/w >> 1 and thus the

only relevant parameters are (a) the ratio w/(2S00τr) = 104, 106 and (b) J00 = 10−22,

10−20 mA cm−2. A high band offset generally favors Jsc, since the exciton dissociation

is made much more favorable than its inverse process (recombination of two free

carriers forming an exciton). A low band offset favors Voc, since the energy loss at

the heterointerface is minimized and band gap (and minority carrier concentration)

are kept as high (and low) as possible to ensure a low recombination current.

distance to the next interface. For the normalized Jsc, then holds

Jsc

Jsc,SQ

= fc =
2LχSχ

w

sinh (w/2Lχ)

Sχ sinh (w/2Lχ) + Dx

Lχ
cosh (w/2Lχ)

(5.38)

The recombination current density will scale linearly with the number of interfaces

per surface area of the device. For high distances between the heterointerfaces, there
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will be few recombination and vice versa. Thus, I rewrite Eq. (5.37) as

J0 = J00 exp(ΔEC/kT )
w

w0

(5.39)

where w0 is an arbitrarily chosen thickness. Figure 5.9 shows the open circuit voltage

Voc, the normalized short circuit current density Jsc/Jsc,SQ and the relative depen-

dence of the product VocJsc/Jsc,SQ as a function of the distance between two interfaces

w. In order to make the values of J00 comparable between Figs. 5.8 and 5.9, I choose

w0 = 10 nm and ΔEC = 0.4 eV. Now, I have more free parameters than before, since

I use a more complicated ansatz for the normalized short circuit current density. As

parameters for Fig. 5.9, I chose the exciton diffusion length Lχ and the prefactor

J00 of the saturation current density. The other parameters that were kept constant

are the recombination lifetime τr = 100μs and the prefactor S00 = 1 cm/s of the

surface recombination velocity.

Figure 5.9a shows the variation of the exciton diffusion length Lχ leading to

a varying optimum distance w for a maximum product VocJsc/Jsc,SQ. As shown in

Fig. 5.9b, for a constant exciton diffusion length Lχ = 10 nm and varying J00, the

optimum distance stays roughly the same. The optimum is rather broad and peaks

at distances of around 5 nm, i.e. slightly smaller than the exciton diffusion length.

5.3.5 Optoelectronic reciprocity

Just like for the bipolar and excitonic pin-type solar cells, I want to discuss the

connection between fill factor losses (voltage dependent collection and injection)

and the reciprocity theorem also for the case of the bulk heterojunction solar cell.

For the following simulations, I again neglect the effect of the bound electron/hole

pair and use our complete model including photon recycling but without coherent

optics.

In order to include exciton diffusion and dissociation at an interface into the

model presented in chapter 4, I need to reinterpret the value of the dissociation

lifetime τD. The derivation presented in chapter 5.2.4 leads to an effective generation

rate for bound excitons and subsequently free carriers. Since the generation rate in

the excitonic model from chapter 4 is G = χ/τD, it is possible to include the effects

of exciton diffusion and dissociation in the value for τD. The equation that follows
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Fig. 5.9: Simulation of short circuit current density Jsc (normalized to the maximum

Jsc,SQ), open circuit voltage Voc and the product VocJsc/Jsc,SQ as a function of the

distance between two heterointerfaces in a bhj-solar cell using the analytical equations

(41, 42). I vary (a) the exciton diffusion length Lχ = 10−7, 10−5 cm and (b) J00 =

10−22, 10−20 mA cm−2. A high distance between interfaces generally favors Voc since

interface recombination is minimized, while a low distance favors Jsc due to more

efficient diffusion of excitons to the next interface.

is [117]

τD = τr

[
w

2Sχτr

+
w

2Lχ

coth(w/2Lχ) − 1

]
. (5.40)

In the following, I will compare the two parameter combinations A and B as

introduced in Table 4.1 with two parameter combinations C and D that are bhj-

devices. Bhj device means that no excitonic transport in the x-direction as defined

by Fig. 5.10 is allowed and that the exciton mobility μχ(y) in y-direction is inserted

in Eq. (5.40) to determine the effective dissociation velocity τD which is used in

the differential equations (4.1, 4.2, 4.3). Table 5.1 summarizes all four parameter

combinations.
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Fig. 5.10: Scheme of a bulk heterojunction (bhj) solar cell. Bulk dissociation of

excitons is interpreted in terms of bhj-devices as the combined process of diffusion

to and subsequent dissociation at the nearest interface. The exciton diffusion to

the interface is described by the mobility μχ(y) in y-direction, while the mobility of

excitons in x-direction is assumed to be zero. In terms of the model of chapter 4,

the bhj solar cell is a device with purely bipolar transport in x-direction and with

a dissociation lifetime that depends on the exciton transport in y-direction via Eq.

(5.40)

Figure 5.11 shows the same data as Fig. 4.6 and in addition the corresponding

simulation results for the two bhj-configurations (C and D). Figure 5.11a,b shows

that the dependence of short circuit current density and fill factor on the electron

and hole mobility is the same for configurations B and D, i.e. for the bhj and the

no-bhj case. Thus reducing bipolar mobilities in a bhj solar cells has the same

effect as in any other bipolar pin-type device. Reducing the exciton mobilities,

however, is different for the bhj and the no-bhj case. For cfg. A, the reduced exciton

mobility in Fig. 5.11c,d is a mobility in x-direction. A reduction of μχ(x) leads

to a decrease in excitonic photocurrent being partly compensated by an increase

in bipolar photocurrent. For the bhj case the interpretation of exciton mobility

is different. Now I discuss the exciton mobilty μχ(y) in y-direction towards the

next interface. Thus the exciton mobility where the short circuit current density

Jsc of the bhj solar cell (cfg. C) starts to fall below its maximum is at around
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Tab. 5.1: Mobilities μn,p of free carriers and μχ of excitons as well as the bulk

dissociation lifetime τD for the (now) four discussed configurations of non-ideal solar

cells. In case of configurations C and D, the dissociation lifetime τD is calculated via

the equation for bulk heterojunction solar cells [Eq. (5.40)]. The parameters used to

obtain these values are for cfg. C: a lifetime τr = 200μ s, an interface dissociation

velocity Sχ = 1010 cm/ s and an interface distance w = 10 nm. Furthermore, I

assumed that the exciton diffusion length follows from Lχ =
√

μτrkT/q. For cfg. D,

I used Lχ = 10w = 100 nm. All other parameters were the same as for cfg. C.

cfg. A cfg. B cfg. C cfg. D

carrier mobility μn,p [ cm2( V s)−1] 103 10 103 1

exciton mobility μχ(x) [ cm2( V s)−1] 10−5 10−5 0 0

exciton mobility μχ(y) [ cm2( V s)−1] - - 10−8 − 10−1 2 × 10−5

dissociation lifetime τD[ s] 10−4 10−10 3 × 10−11 2 × 10−7

−3 × 10−4

μχ = 10−6 cm2( V s)−1, i.e. three orders of magnitude below the value for the non-

bhj cell (cfg. A). These three orders of magnitude stem from the ratio of distance w

to the interface divided by the cell thickness d, which is w/d = 1/30. Since mobility

enters the diffusion length via a squareroot-term, the factor of 30 in diffusion length

normalized to the relevant geometrical quantity (either d or w) translates to a factor

of 302 ≈ 103 in mobility.

Figure 5.12 shows the comparison of directly measured quantum efficiency Qe,dir

and the quantum efficiency Qe,EL derived from the electroluminescence measurement

via Eq. (2.33) for all cfgs. A-D. Figure 4.8 already discussed the non-bhj cases A

and B. Now I add the two bhj cases C and D. The main result stays the same. As

long as all bipolar mobilities are high, the fill factor will be high (cf. Fig. 5.11) and

unaffected by excitonic mobility changes. In this case also the reciprocity will hold

and Qe,dir = Qe,EL as shown in Figs. 5.12a,c. If bipolar mobilities are low, the fill

factor will be below its high mobility value and the reciprocity does not hold any

more, i.e. Qe,dir �= Qe,EL. This is the case for both cfgs. B and D and thus for Figs.

5.12b,d. For cfg D, the disagreement between Qe,dir and Qe,EL is larger than for cfg.
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Fig. 5.11: Summary of the effects of reduced bipolar and excitonic mobilities on

short circuit current density Jsc and fill factor FF of configurations A-D. In (a)

and (b) I used the parameters for cfg. B (dashed line) and cfg. D (dotted line)

and varied the electron and hole mobility μn,p. We find a considerable decrease of

fill factor for mobilities μn,p < 102 cm2( V s)−1, while a loss in Jsc starts only for

even lower mobilities μn,p < 100 cm2( V s)−1. Both, the bhj and the non-bhj solar

cell show the same dependence of Jsc and FF on mobility. In (c) and (d), I used

the parameters for cfgs. A (dashed line) and C (dotted line) and varied the exciton

mobility. For cfg. A, Jsc is reduced for exciton mobilities μχ < 10−3 cm2( V s)−1,

while the fill factor stays unaltered, since the electron and hole mobilities are high

enough to warrant voltage independent collection. For the bhj cell (cfg. D, dotted

line) the decrease of Jsc starts only at μχ < 10−6 cm2( V s)−1, where the exciton

mobility is too low to reach the heterointerface.

B simply because the bipolar mobility is smaller. On this level of abstraction, I see

no differences between the bhj and the no-bhj case.
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Fig. 5.12: Simulation of the quantum efficiency Qe,dir (diamonds) compared with the

simulation of the electroluminescence spectrum, from which the quantum efficiency

Qe,EL (solid line) is calculated using Eq. (2.33), for the case of (a) configuration

A, (b) configuration B, (c) configuration C and (d) configuration D. For case (a)

and (c), the electron and hole mobility are high (μn,p = 103 cm2( V s)−1) and thus

collection and injection of carriers is voltage independent and the reciprocity is valid.

For case (b), the low bipolar mobility leads to a small deviation between Qe,dir and

Qe,EL. For case (d), the even lower mobility leads to a clearly visible deviation between

Qe,dir and Qe,EL

5.4 Comparison to experimental results

Recent investigations [106, 107] on the internal quantum efficiency Qi in bulk het-

erojunction solar cells revealed different spectral regions with distinct differences in

the internal quantum efficiency. The internal quantum efficiency has been defined

by

Qi(E) =
Qe(E)

a(E)
, (5.41)



5.4 COMPARISON TO EXPERIMENTAL RESULTS 107

where Qe is the measured external quantum efficiency and a(E) the absorptance cal-

culated with a matrix transfer formalism. For higher energies, the internal quantum

efficiency was reported to be considerably higher than the internal one. The two

suggested explanations [107] were that the change in Qi is induced by the photons

being absorbed in the fullerene phase which has either (i) a smaller domain size

compared to the polymer phase [118, 119] or (ii) a higher exciton diffusion length,

which can reach values of 40 nm in the fullerene [120] compared to 10 nm in the

polymer.

In the framework of our model, both explanations have nearly the same effect.

Under the assumption that the transfer of excitons at the interface into bound e/h-

pairs at the interface is efficient (SD > 102 cm/ s), smaller domain sizes and higher

exciton diffusion lengths both increase the ratio Lχ/w and subsequently the collec-

tion efficiency fc. For exciton diffusion lengths as high as 40 nm, it is reasonable

to assume that Lχ/w >> 1 holds in the fullerene and, thus, that the collection

efficiency in the fullerene fc,F ≈ 1. This finding helps to adjust the value of the

generation rate G̃KSMB accounting for bound e/h-pair dissociation, which is the

same for excitons created in the fullerene and in the polymer. The internal quan-

tum efficiency for lower energies, corresponding to absorption in the polymer, then

allows us to fix the collection efficiency in the polymer fc,P < 1. The other param-

eters of the model, especially those entering in the dissociation probability Pdiss for

bound e/h-pairs have to be fixed by comparison between simulated and experimental

current/voltage-curve.

Figure 5.13 shows an example for the application of our model to quantum

efficiency data published in Ref. [106]. The open symbols represent the original

data, I wanted to reproduce with our simulations (lines). The layer stack needed for

the optical simulations consists of 1mm quartz superstrate, a total of 133 nm ITO, 68

nm of PEDOT:PSS, 186 nm of the absorber blend consisting of PF10TBT/PCBM

(poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole]/ ([6,6]-phenyl C60

butyric acid methyl ester), 1 nm LiF and a 100 nm thick Al back reflector. The nk-

data files used in our simulations were obtained from the authors of Ref. [106] leading

to the absorptance represented by the solid line in Fig. 5.13. First I adjusted the

parameters for the exciton dissociation in the fullerene (λ < 420 nm) to Lχ/w >> 1

and in the polymer (λ > 420 nm) to Lχ/w = 0.78. All other parameters had to
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Fig. 5.13: Internal and external quantum efficiency as well as absorptance of the

cell presented in Ref. [106] (open symbols) compared to our simulations (lines). The

parameters used for the simulations were a band gap Eg/q = 1.4V, a built in voltage

Vbi,0 = 1.4V, an effective density of states NC,V = 2.5 × 10−19 cm−3 in valence and

conduction band, a dielectric constant εr = 3.4 of the blend, an electron mobility

μn = 1.2 × 10−3 cm2/Vs, a hole mobility μp = 1.7 × 10−4 cm2/Vs, a decay constant

for bound e/h-pairs kf/(w/2) = 2.8×105 and an average separation distance of bound

e/h-pairs a = 1.8 nm.

be adjusted by both considering the quantum efficiency as well as the whole J/V -

curve as shown in Fig. 5.14 (circles are the data from Ref. [106] and the solid

line represents the simulation). Among the parameters relevant for electron hole

transport as well as dissociation and recombination of bound pairs, some were kept

constant or within close boundaries, while others were used to obtain a good fit of

the J/V -curve. The effective density of states NC,V = 2.5 × 10−19 cm−3 in valence

and conduction band as well as the dielectric constant εr = 3.4 were assumed to be

the same as in Ref. [102]. The band gap Eg = 1.4 eV, meaning the energy difference

between the lowest unoccupied molecular orbital in the electron acceptor (PCBM)

and the highest occupied molecular orbital in the electron donor (PF10TBT) was
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Fig. 5.14: Experimental current/voltage curve from Ref. [106] (open circles) com-

pared to our simulation (solid line) using the same parameters as for the quantum

efficiency in Fig. 5.13.

only varied slightly around the approximate value Eg = 1.3 eV, given by Moet

et al. [121] for the material system under investigation, in order to adjust the open

circuit voltage precisely. For simplicity, the built in voltage was assumed to equal the

band gap Vbi,0 = Eg/q = 1.4V. The parameters that were obtained after fitting are

an electron mobility μn = 1.2×10−3cm2/Vs, a hole mobility μp = 1.7×10−4cm2/Vs,

a decay rate for bound e/h-pairs kf/(w/2) = 2.8×105 s−1 and an average separation

distance of bound e/h-pairs a = 1.8 nm.
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Chapter 6

Detailed balance model for solar

cells with multiple exciton

generation

The detailed balance model for quantum dot solar cells with quantum efficiencies

above unity is extended to the case of non-ideal extraction of carriers from dots and

finite mobilities of free carriers. For more realistic estimations of maximum efficien-

cies, I include experimental values for Auger lifetimes and absorption coefficients.

Thus, for a given material, the model is capable of determining the critical values for

the mobilities and extraction lifetimes in order to make the efficiency benefit from

multiple exciton generation.

6.1 Introduction

While current single junction technologies are getting closer to the Shockley-Queisser

(SQ) limit [30], there is a growing interest in mechanisms that can improve efficien-

cies above this limit [4, 122]. One such mechanism that overcomes the restrictions

of the SQ-limit is the generation of more than one exciton or electron/hole-pair

from a single photon with energy more than twice the band gap. Although first

demonstrated in bulk silicon [123], the efficiency and threshold of multiple exciton

generation (MEG) are strongly enhanced in quantum dots [26, 78, 124] made of,

e.g., PbSe [125], CdSe [126], InAs [127], or even Si [128]. Up to now, the evidence

111
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for MEG in these quantum dot layers stems from transient absorption and pho-

toluminescence spectroscopy [129], and not from quantum efficiency measurements

of finished solar cells. In addition, approaches to estimate the possible efficiency

gain by MEG have been restricted to detailed balance calculations similar to the

Shockley-Queisser approach that do not consider extraction of carriers [130–132].

However, although this is reasonable in many crystalline semiconductor cells, for

quantum dot devices, extraction of photogenerated carriers is one of the most severe

bottlenecks.

This chapter extends the radiative limits valid for perfect carrier collection

to the case of a finite extraction lifetime of excitons from the quantum dot and

a finite mobility of the free carriers. We use measured absorption coefficients for

films of coupled PbSe quantum dots [133] to calculate the absorptance and different

configurations for the quantum yield of MEG as a function of energy. Quantum yield

and absorptance directly yield the generation rates for mono-, bi-, and triexcitons

separately. Considering the two bottlenecks for charge carrier extraction, the (i)

extraction of multiexcitons on a time-scale faster than the Auger-recombination and

(ii) transport of free carriers to the contacts, I use two different models, where the

respective other parameter is kept sufficiently high that it does not limit the result.

6.2 Model

Figure 6.1a shows the processes taking place in a quantum dot upon absorption of a

high energy photon (adapted from Ref. [134]). First, the absorbed photon transfers

its energy to a hot monoexciton with an energy much higher than the band gap

on a time scale of ≈ 0.1 ps. By impact ionization, a hot biexciton is created,

which then thermalizes (≈ 2 ps) to form a relaxed biexciton. This biexciton is the

useful state for a solar cell with quantum efficiency above unity. If no extraction

of the biexciton happens, the biexciton forms a hot monoexciton again by Auger

recombination taking around 20 - 130 ps [133,134]. Since several thermalization steps

have happened during the process from the initial hot monoexciton, this second hot

monoexciton has considerably less energy, i.e. not enough energy to start the cycle

from the beginning and form a biexciton again. Thus, after a last thermalization

step (≈ 2 ps), we are left with a single relaxed exciton. This scheme shows the
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processes that happen in a sample of quantum dots under irradiation with high

energy photons. Now, I have to consider the case, when these quantum dots are

part of the absorber of a solar cell.

In order to calculate time constants relevant for quantum dot solar cells, we

need to agree on a solar cell geometry useful for such quantum dot solar cells.

Nozik [77] suggested in principal three geometries: (i) a version of the dye-sensitized

solar cell with quantum dots instead of dyes, (ii) a bulk heterojunction approach with

quantum dots in close proximity to a hole- and an electron-conducting polymer, and

(iii) an array of quantum dots forming the intrinsic region of a pin-junction solar

cell. We will focus on the two configurations, depicted in Fig. 6.1. Figure 6.1b

shows the scheme of a bulk-heterojunction type cell, where the absorber layer - the

dots - are separated from the electron- and hole-transporting layer (ETL and HTL).

This configuration has a conceptual advantage since it reduces the problem to a

zero-dimensional one if the transport in the ETL and HTL is efficient. The second

configuration shown in Fig. 6.1c is an array of quantum dots, serving for carrier

absorption and collection. Solar cells of this type have already been fabricated

[135], however without reaching quantum efficiencies above unity. From a modeling

perspective, this type of cell needs finite mobility effects to be considered, since

quantum dot arrays are usually low mobility materials.

The simplest starting point for a detailed balance model is thus the bulk het-

erojunction cell from Fig. 6.1b, where I only consider extraction of carriers from one

quantum dot and keep the concentration of electrons n and holes p constant over

the thickness of the device, i.e. I assume high mobilities for free carriers in the ETL

and HTL.

Since, I won’t consider thickness dependencies, the model will be an exten-

sion of the discrete two state model introduced in the fundamentals chapter 2.3.1.

The simple two state model described the interaction between minority carriers and

photons, phonons and the contact. The basic difference is that the present model

has mono-, bi-, and triexcitons instead of minority carriers and it has to include the

interactions between the excitons. To compute the interaction of mono-, bi-, and

triexcitons with each other, with the incoming photons and with the free carriers

in the ETL and HTL, I define rate equations, which strictly obey the principle of

detailed balance. The simplest example is the detailed balance between photogener-
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Fig. 6.1: (a) Scheme of the processes in a quantum dot upon absorption of a high

energy photon without any extraction of the excitons from the dot. Schemes of two

different configurations of a quantum dot cells. (b) Bulk heterojunction configu-

ration, where the absorption in the quantum dot is separated from the electron and

hole transporting layers. (c) Quantum dot array as intrinsic region of a pin-junction

solar cell.

ation and radiative recombination. Let us define the concentration of monoexcitons

normalized to the equilibrium value as x1 and the photon flux normalized to its

equilibrium value and already multiplied with the quantum yield for monoexcitons

as φ1; then the detailed balance requires that

a1x1 = a∗

1φ1 (6.1)
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holds in thermodynamic equilibrium. In Eq. (6.1), a1 and a∗

1 are the rate constants

for radiative recombination and photogeneration of a monoexciton. This, however,

means that Eq. (6.1) holds, when both x1 and φ1 are one, i.e. equal to their

equilibrium value, which in term leads to the requirement a1 = a∗

1. Thus, if I

normalize all exciton and carrier concentrations as well as photon fluxes, I write the

three rate equations for the normalized concentration xi of i-excitons (where i = 1

denotes mono-, i = 2 bi-, and i = 3 triexcitons) always with the same rate constant

for each process and its corresponding inverse process. The resulting matrix equation

in steady state is

M

⎛
⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

a1φ1

a2φ2

a3φ3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

c1np/n2
i + b1

0

0

⎞
⎟⎟⎠ = 0 (6.2)

with the matrix M defined as

M =⎛
⎜⎜⎝

−a1 − b1 − b2 − c1 − c2np/n2
i b2 + c2 0

b2 + c2np/n2
i −a2 − b2 − b3 − c2 − c3np/n2

i b3 + c3

0 b3 + c3np/n2
i −a3 − b3 − c3

⎞
⎟⎟⎠

(6.3)

and with ni as the intrinsic carrier concentration. The rate constants in units of

[ cm−2 s−1] for radiative interactions - absorption and radiative recombination - are

denoted as ai for i excitons per dot. The factor aiφi is the generation rate for the

i-exciton, thus, ai itself is the generation rate under ambient black body radiation in

equilibrium. Note at this point, that ai is the generation rate per unit surface, since

we don’t need to consider any depth dependence of the generation rate as long as

we keep the concentration of free carriers independent of depth. From ai, I calculate

the equilibrium concentration x0i of i-excitons with the help of

ai =
x0i

τrad,i

(6.4)

in units [ cm−2].

The rate constants for non-radiative interactions are denoted as bi and describe

the non-radiative recombination of xi creating a xi-1. For instance, b2 describes

the strength of the non-radiative recombination of a biexciton thereby creating a
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monoexciton. In practice, the bi are determined by the equilibrium concentrations

x0i and the Auger lifetimes τAuger,i as

bi =
x0i

τAuger,i

(6.5)

for bi- and triexcitons and b1 = 0 for the radiative limit. That means, I want to

include all intrinsic recombination processes, i.e. radiative recombination for the

monoexciton and Auger-recombination for all higher numbers of excitons confined

to one dot. The value of the Auger lifetime for the i-exciton is assumed to be

τAuger,i = 120 × 4/i2ps [136].

Finally, the coupling constants of excitons to the free carriers are denoted as

ci and can again be expressed in terms of a lifetime τx for extraction of excitons as

ci =
x0i

τx,i

(6.6)

I assume that one free e/h-pair is created by one extraction process, e.g. the

extraction of one e/h-pair from a biexciton also creates one monoexciton. To calcu-

late the current density J for a given voltage V = kT/q ln(np/n2
i ), where kT is the

thermal energy and q the elementary charge, I evaluate

J = qc1

(
np/n2

i − x1

)
(6.7)

6.3 Generation of multiexcitons

There is currently a strong debate [134, 137, 138] about the origin of the ultrafast

(τ < 200 fs) creation [138] of multiexcitons in quantum dots. Since, we are only

investigating the extraction of carriers, we assume that photons with a certain energy

have a certain probability to create a multiexciton, i.e. more than one exciton

confined in the same dot. The timescale for the creation of a multiexciton is assumed

to be smaller than the timescales relevant for the extraction and recombination

(Auger lifetime τAuger ≈ 100 ps) of the excitons.

The quantum yield, defined as the average number of excitons per dot created

by one photon has been experimentally determined for quantum dots made from

different materials. For the case of PbSe, which will be discussed throughout this

chapter, Schaller et al. [9] reported a threshold energy Eth = 2.85Eg and a slope
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Fig. 6.2: (a) Quantum efficiency as a function of energy E for the case of multiple

exciton generation (MEG) with (i) energy threshold Eth = 2.85Eg and slope m =

1.14/Eg and (ii) with Eth = 2.1Eg and m = 1.0/Eg. The band gap corresponding to

the absorption coefficient is Eg = 0.9 eV. (b) From the external quantum efficiency,

the number of photogenerated carriers per energy interval for the two configurations

is calculated and compared with the case without MEG.

m = 1.14/Eg, both relative to the band gap Eg. This quantum yield was also used

by Klimov [131] as well as Hanna and Nozik [132] to calculate the maximum power

conversion efficiency for quantum dot solar cells with MEG as a function of band

gap. Theoretical calculations of Franceschetti et al. [134] as well as experimental

results of Ellingson et al. [137], however, showed threshold energies for MEG as low

as Eth = 2.1Eg for PbSe quantum dots. Thus, I will make our calculations for two

versions of the quantum yield as a function of energy: (i) the version according
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to [125, 131, 132] with Eth = 2.85Eg and a slope m = 1.14/Eg, and (ii) a version

with a threshold energy Eth = 2.1Eg according to [134, 137] and a linear slope

m = 1.0/Eg. Figure 6.2a shows the maximum possible external quantum efficiencies

Qe as a function of energy for the two versions. The external quantum efficiency in

Fig. 6.2 follows via

Qe(E) = a(E)QY (E) (6.8)

as a function of absorptance a(E) and quantum yield QY (E).

The absorptance, which corresponds to the external quantum efficiency with-

out MEG (solid line) in Fig. 6.2a, follows from the absorption coefficient for a film

of coupled PbSe quantum dots (Eg = 0.9 eV), calculated from the optical density

and photoluminescence data presented in Ref. [133]. The photoluminescence data

was used to determine the absorption coefficient in the weakly absorbing spectral

range [139], which is of paramount importance if one wants to calculate the radiative

recombination current (see Equation (2.38)) needed for the computation of radia-

tive efficiency limits. The absorptance and the generation rate are calculated from

the absorption coefficient under the assumption of perfect Lambertian light trapping

with a limiting pathlength enhancement of 4n2 according to Yablonovitch [140]. The

refractive index n, which is thus of high relevance for the absorptance, is chosen as

n = 4.7 according to values for bulk PbSe [141]. For the case of perfectly isotrop-

ically scattering surfaces, which I assume to be a reasonable approximation to the

optimum absorptance, the absorptance and generation rate are calculated according

to Refs. [142]. The thickness d chosen for the absorber layer is d = 150 nm.

Figure 6.2b shows the quantum efficiency from Fig. 6.2a multiplied with the

AM 1.5g spectrum [47] and, thus, the number of photogenerated electron/hole (e/h)-

pairs per energy interval. For a detailed balance model, I need to be able to calculate

the generation rate for mono-, bi- and triexcitons under illumination with the solar

spectrum as well as under illumination with the black body spectrum at ambient

temperature. These calculations require that the quantum yield is split into the

parts that account for creation of mono-, bi- and triexcitons, respectively. Figure

6.3 shows such a distribution of the quantum yield QY . For energies just above the

threshold energy, the 1 < QY < 2 holds and thus, there is a certain probability for

the creation of mono- and a certain probability for the creation of biexcitons. If I



6.4 RESULTS 119

Fig. 6.3: Distribution of the total quantum yield on the generation rate of mono-,

bi- and triexcitons.

denote the probability for the creation of monoexcitons with β,

QY (E) = (1 − β) × 2 + β × 1 (6.9)

must hold, since 0 < β < 1. Now, the value of β is fixed automatically, since QY

is known. For energies E > 3Eg, the creation of triexcitons becomes possible, as

well. Then, I would need to introduce a new parameter that regulates how much

of the light directly creates triexcitons. This makes the solution of Eq. (6.9) be no

longer unique. Thus, I assume that creation of triexcitons is only relevant, when

QY > 2 holds. At the corresponding energy, the generation rate for monoexcitons

is zero and the distribution of the photons to the generation rates for mono-, bi-

and triexciton becomes unique again.

6.4 Results

Figure 6.4a shows the current/voltage (J/V ) curves resulting from the solution of

Eq. (6.7) with varying values of τx = τx,1 = τx,2 = τx,3 and an assumed radiative
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lifetime τrad = 10 ns . The quantum yield chosen for the J/V -curves corresponds

to version (i) in Fig. 6.2, while the dotted line is the reference without MEG. It is

obvious from Fig. 6.4a that an increase in τx does only affect the short circuit current

and not the fill factor. This is due to the fact that the equilibrium concentration of

multiexcitons is so low that the recombination current does not depend on creation of

multiexcitons by injection of free carriers and that the photocurrent is not dependent

on the applied voltage. However, in general Eqs. (6.2, 6.3) allow for a non-linear

recombination as well as photocurrent, provided the parameters are chosen such that

the np-product in the off-diagonal coefficients of the matrix M starts to matter.

Figure 6.4b shows the short circuit current density Jsc as a function of ex-

traction lifetime τx for the two quantum yields in Fig. 6.2 and for the case of no

MEG. As expected, the short circuit current density Jsc decreases strongly, when

the extraction lifetime becomes longer than the Auger lifetime.

Now, I want to briefly discuss the issue of finite mobilities of the free charge

carriers. We presented a model [see Chapter 4], capable of calculating the radiative

efficiency limits for pin-junction cells with finite mobilities based on the photon-

recycling scheme developed in Ref. [33, 142]. If I assume that the extraction of

carriers is very efficient, that photon recycling is only relevant for the monoexcitons

and that the finding of ideal recombination currents and constant photocurrents

from Fig. 6.4 is reasonable, the mobility dependent J/V -curves are calculated only

requiring modifications of the generation rate according to Fig. 6.3. Figure 6.5a

shows the J/V -curves as a function of electron and hole mobility μn = μp. In

contrast to the change in extraction lifetime, the change in mobility instantaneously

leads to losses in both fill factor and short circuit current density Jsc. Figure 6.5b

shows the change in short circuit current density Jsc as a function of electron and

hole mobility, again for the two versions of the quantum yield as in Fig. 6.4b and

for the case without MEG.

6.5 Summary

We presented models to simulate the extraction of multiexcitons created by high

energy photons from quantum dots. The two possible electronic bottlenecks are

(i) the extraction of excitons from a dot on a time scale faster than the respective
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Fig. 6.4: (a) Current/voltage-curves for the quantum yield version (i) for different

values of the extraction lifetime (τx = 10−8, 2.8×10−9, 7.7×10−10, 6.0×10−11, 10−13

s) compared to the case without MEG. (b) Short circuit current density as a function

of extraction lifetime for both versions of the quantum yield depicted in Fig. 6.2a

((i): solid line with open squares, (ii) dashed line with open triangles) and for the

case without MEG (dotted line with open squares).

radiative and non-radiative lifetime and (ii) the finite mobility of free carriers. We

show how the short circuit current depends on both extraction lifetime and finite

mobilities.
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Fig. 6.5: (a) Current/voltage-curves for the quantum yield version (i) for differ-

ent values of the electron and hole mobility (μn,p = 10−2, 10−1, 100, 103 cm2( V s)−1)

compared to the case without MEG. (b) Short circuit current density as a function

of electron and hole mobility for both versions of the quantum yield depicted in Fig.

6.2a ((i): solid line with open squares, (ii) dashed line with open triangles) and for

the case without MEG (dotted line with open squares).



Chapter 7

Experimental applications of the

reciprocity relation

This chapter discusses the electroluminescence measurements of c-Si, Cu(In,Ga)Se2

and GaInP/GaInAs/Ge triple-junction solar cells and shows how the interpreta-

tion of these measurements is simplified by the reciprocity relation introduced and

discussed in the fundamentals chapter.

7.1 Introduction

In the fundamentals chapter 2, I introduced two optoelectronic reciprocity relations

that connect the light absorbing with the light emitting situation in a solar cell. In

chapters 3, 4 and 5, I discussed the validity range of the reciprocity relation between

electroluminescence and photovoltaic quantum efficiency [Eq. (2.33)] in different

types of solar cells. In the following, I will show how Eqs. (2.33) and (2.41) help to

better interpret EL measurements used for solar cell characterization.

Depending on the material under investigation, EL can help to characterize

different physical properties of a solar cell. I will start with the example of crystalline

silicon, where the detection of optical and electronical properties, like the quality of

the back side reflector or the effective diffusion length, is of major interest. I start

with the description of the spectrally resolved EL before I proceed to the even more

relevant case of spatially resolved EL.

Electroluminescence imaging has become an important topic for characterisa-

123
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tion of solar cells and modules in the last years. This is mostly due to the fact that it

is a fast spatially resolved method that is in addition cheap and easy to implement.

The necessary prerequisites are merely a silicon CCD camera, with a PC for data

processing and a protection agains ambient light to ensure a low noise level of the

picture. The time needed for one image varies from milliseconds to few minutes

depending on the applied current and the quality of the cell. Similar methods that

provide a comparable amount of information like the LBIC (light beam induced

current) method need to scan the sample and thus take several hours.

The major advantage of EL is at the same time its major drawback. It is

sensitive to a large variety of different influences. That means that when something

is wrong in the device, it will most likely show up as a dark spot in the EL image.

However, when something dark shows up in the EL image, you will most likely not

know for sure what it is. Sound interpretation of EL image is thus both challenging

and of high importance. The main drawback of spatially resolved EL imaging is the

fact that for every pixel the information is a scalar, where no spectral information is

contained. Thus, I present simulations showing how to add the spectral component

to EL imaging and how to interpret the images easily. The crystalline silicon chapter

ends with a short section, dedicated to the question of Si based LEDs [57,143–147]

and how their performance relates to the open circuit voltage.

In the case of Cu(In,Ga)Se2 solar cells, I discuss the EL as a function of

the photon energy and the sample temperature but neglect the issue of spatial

information. I focus on the different radiative recombination paths in the solar

cell and how they evolve over temperature. In addition, I quantify the amount of

band gap inhomogeneity inside highly efficient Cu(In,Ga)Se2 solar cells from the

electroluminescence in several ways. The main tendency is a rather low amount of

band gap inhomogeneities that could be explained with the intentional band gap

grading alone.

The last device, I characterize with EL, is a III/V-based multijunction solar

cell on Ge substrate. For multijunction cells, the main advantage of EL is the access

to information about individual subcells. I analyze electroluminescence spectra of

a GaInP/GaInAs/Ge triple-junction solar cell at different injection currents. Us-

ing again the reciprocity theorem between electroluminescent emission and external

quantum efficiency [Eq. (2.33)] allows me to derive the current/voltage curves and
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the diode quality factors of all individual subcells.

7.2 Crystalline Silicon

In terms of internal quantum efficiency Qi and front side reflectance Rf, Eq. (2.33)

reads as

φem(rs, E) = [1 − Rf(rs, E)]Qi(rs, E)φbb(E)

[
exp

(
qV (rs)

kT

)
− 1

]
, (7.1)

where rs = (x, y) is the spatial coordinate on the surface of the device. It is important

to note that in Eq. (7.1) the dependence of φem(rs, E) on the coordinate rs shows up

in (i) the reflectance Rf, (ii) in the local internal quantum efficiency Qi(rs, E), and

(iii) in the local junction voltage V (rs) that might be different at different coordinates

along the junction area. Thus, the three different terms in Eq. (2.33) correspond

to the classical loss mechanisms in solar cells: (i) optical losses, (ii) recombination

losses, and (iii) resistive losses [148].

In the following, I will discuss mainly optical losses and recombination losses

and show how to derive them from both spectrally as well as spatially resolved EL

measurements.

7.2.1 Spectrally resolved EL

In order to measure the EL of mono-crystalline silicon solar cells a liquid nitrogen

cooled Ge-detector attached to a single stage monochromator is used. A function

generator applies a rectangularly shaped voltage to the sample and amplifies the

signal of the Ge-detector with lock-in technique.

Figure 7.1 shows the detected room temperature EL (filled circles) of a tex-

tured sample in arbitrary units. By applying Eq. (2.33), I determine the external

quantum efficiency Qe,EL (filled triangles) from the EL spectrum (in arbitrary units).

A calibrated quantum efficiency measurement (open squares) allows to adjust the

Qe,EL in the overlap region. Combining two totally different measurements, I finally

receive a quantum efficiency spanning nine orders of magnitude and revealing a good

agreement of both measurements in the overlap region.

In principle it is possible to extract parameters like the effective diffusion length

from the EL measurement, as it is a standard procedure for quantum efficiency
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Fig. 7.1: Electroluminescence spectrum, external quantum efficiency calculated from

the EL spectrum, and directly measured quantum efficiency as a function of the pho-

ton energy. The quantum efficiency Qe,EL from EL is scaled to the directly measured

Qe,dir. The increased signal of the EL for energies E > 1.35 eV is due to stray light.

measurements. The interesting spectral region, however, covers penetration depths

de << Lα < d/4, where d is the cell thickness and de the emitter thickness. For cell

thicknesses d = 250μm this inequality corresponds approximately to an energy range

1.31 eV < E < 1.59 eV, where luminescence emission is already much lower than

it is at the peak. Stray light does not allow correctly evaluating the EL spectrum

with our setup, as can be seen by in Fig. 7.1 featuring an additional signal due to

stray light starting at around 1.35 eV. Future investigations using a double stage

monochromator will allow more detailed investigation of the high energy part of the

spectrum, due to enhanced stray light suppression.

In contrast to electronic properties of the device, which affect mainly the high

energy part of the spectrum, the optical properties of the device are visible in the

low energy regime. Thus, EL spectra nicely reveal the effect of increased light

trapping, usually caused in crystalline silicon cells by textured front surfaces and

highly reflective back surfaces. In order to quantify the quality of light trapping in

our samples with EL, we need a useful mathematical description for the low energy
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part of the quantum efficiency. For low absorption coefficients, the exponential decay

of the light intensity due to Lambert-Beer’s law becomes smaller, leading to a nearly

constant photon flux at these low photon energies everywhere in the device. Thus,

for weakly absorbed light the generation rate is homogeneous over the depth of the

device, and the external quantum efficiency becomes

Qe = (1 − Rf)αkeff

d∫
0

fc (x) dx = (1 − Rf)αkeffdf c (7.2)

and, thus, proportional to the absorption coefficient α times an effective pathlength

enhancement factor keff. The pathlength enhancement keff describes the path weakly

absorbed light travels in the cell before it leaves the cell as a multiple of the cell

thickness. Summarized in the quantity keff are the properties of the front texture,

which diffracts light into oblique angles, and the quality of the back reflector. In Eq.

(7.2), Rf denotes the reflectance at the front surface, while fc(x) is the collection

efficiency of photogenerated carriers.

Since photogeneration is homogeneous for low absorption coefficients as dis-

cussed above, I use the average collection efficiency

fc =
1

d

d∫
0

fc (x) dx

=
L

d

S (cosh (d/L) − 1) + D/L sinh(d/L)

S sinh(d/L) + D/L cosh(d/L)
. (7.3)

The second equality follows from the dark carrier distribution, which equals the

collection efficiency in pn-junction solar cells according to the Donolato’s theorem

[34]. The average collection efficiency depends on the bulk diffusion length L, the

diffusion coefficient D and the back surface rembination velocity S. From Eq. (7.2)

now follows the pathlength enhancement as

keff = lim
α→0

Qe

αdf c (1 − Rf)
(7.4)

Figure 7.2 shows the result of plotting keff = Qe/αdf c (1 − Rf) as a function of the

absorption coefficient. The collection efficiency used for these results was calculated

assuming a high diffusion length L = 2 mm appropriate for these monocrystalline

floatzone cells, a surface recombination velocity of S = 100 cm/ s and an electron
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Fig. 7.2: Pathlength enhancement factor keff as a function of the absorption coeffi-

cient for two different samples, one with a random texture and one without texture.

diffusion constant D = 27 cm2/ s (corresponding to a doping concentration NA =

1016 cm−3). The values for the collection efficiency are then fc = 0.90 for the 550μm

thick untextured cell and fc = 0.95 for the 250μm thick textured cell. Note that

according to the definition in Eq. (7.4), the pathlength enhancement in Fig. 7.1 has

to be taken for small absorption coefficients, where it saturates. For high absorption

coefficients, the light is absorbed before it reaches the back side of the absorber

and thus, the influence of light trapping on the spectrum vanishes and the value of

keff = Qe/αdf c (1 − Rf) is below unity.

I display the results of a textured and an untextured mono-crystalline solar

cell for comparison of the effect of a random pyramids obtained by a KOH etching.

The textured cell with random pyramids has a pathlength enhancement of roughly

12, while the nominally flat solar cell has a pathlength enhancement of around 2.

Although the effect of the texture is clearly visible, the resulting value of 12 is still

much lower than the maximum possible value of keff = 4n2 ≈ 50 [140], where n ≈ 3.5

is the refractive index of silicon.

Note that the pathlength enhancement as defined in Eq. (7.4) is not necessarily
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a good measure for the increase of the photocurrent. As shown by Brendel [149], not

only a high average pathlength is important for increased photocurrent but also the

distribution of pathlengths. The present method only quantifies the average path

length as shown in Fig. 3.

7.2.2 Spatially resolved EL

Since solar cells are thin (≈ 200μm for wafer based silicon) but large area devices,

spatial inhomogeneities and their characterization are of high importance for pho-

tovoltaics. The simplest approach to spatially resolved measurements is to measure

the quantum efficiency two-dimensionally. However, recording the spectrum for each

point on a cell would be extremely time-consuming. Thus, a common method, the

so called Light Beam Induced Current (LBIC) measurement, uses only a few differ-

ent laser diodes or light emitting diodes. These nearly monochromatic light sources

induce a certain short circuit current which is measured while scanning the cell

with the light spot. In the following, this LBIC measurement will be compared to

electroluminescence imaging.

Figure 7.3a shows an LBIC scan (10 mm × 10 mm) of a monocrystalline silicon

solar cell with a step size of 50 μm and with an LED with λ ≈ 950 nm used as the

light source. The LBIC scan clearly reveals a horizontal band with a lower LBIC

signal. This feature stems from the Al being directly in contact with the silicon

base while the rest of the back surface is passivated with thermally grown SiO2.

The contacts through the SiO2 are realized through lithographically defined point

contacts, which are also visible in the LBIC scan as small spots with decreased signal.

This sample has the advantage of providing macroscopic regions of different back

surface recombination velocity on the same cell. Those parts of the cell, where the

back surface of the absorber is in direct contact with the metal, have a rather high

surface recombination velocity and thus a decreased quantum efficiency and EL,

while the parts passivated with SiO2 have a lower surface recombination velocity

and thus an increased quantum efficiency and thus also an increased LBIC signal.

In the following, we will refer to the regions, where the metal is in direct contact

with the absorber as the ”unpassivated regions” (the point contacts and the dark

horizontal band in Fig. 7.3), and we will refer to the parts of the absorber, where
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Fig. 7.3: Comparison of (a) an LBIC scan (excitation wavelength λ = 950 nm)

and (b) EL image of one part of a monocrystalline silicon solar cell with different

back surfaces. The dark horizontal band in both images stems from an unpassivated

metal surface, while the rest of the back is passivated with a SiO2 layer with small

point contacts. The y-position, which is later used for the linescans in Fig. 7.5, is

indicated by a vertical line.
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the Si is in contact with the SiO2 layer, as the passivated region.

Figure 7.3b shows the corresponding EL image of the same region on the

solar cell. The image was taken with an injection current Jinj = 7.5 mA cm−2 and

an integration time of 300 s. Qualitatively, the image looks similar to the LBIC

image. However, superimposed to the intensity variation between the passivated and

unpassivated regions due to different surface recombination is an intensity variation

depending on the distance to the contact located in the upper left corner of the

image. This additonal feature arises because the internal voltage decreases with

increasing distance from the contacts due to resistive voltage losses of the emitter

and gridfingers.

In order to explain, in which way both images depend quantitatively on the lo-

cal solar cell quantum efficiency Qe(rs), I perform a series of quantum efficiency mea-

surements at different positions close to the transition region between passivated and

unpassivated back side. Theoretically, the quantum efficiency Qe(rs, λ ≈ 950 nm)

should be proportional to the LBIC intensity values ILBIC, i.e.

ILBIC(E, rs) ∝ Qe(E, rs) (7.5)

Since the LBIC measurement setup has no absolute calibration, I have to use the

proportionality sign in Eq. (7.5), while for a calibrated setup ILBIC(E, rs) = Qe(E, rs).

For the EL measurement, the photon flux emitted by the solar cell is given by Eq.

(7.1), while the spectrally resolved intensity φcam of the camera signal is then

φcam(E, rs) ∝ Qe(E, rs)φbb(E)Qcam(E) (7.6)

where Qcam is the quantum efficiency of the camera. The EL image as shown in Fig.

7.3b is a scalar value for each pixel. The intensity of the camera signal Φcam follows

from Eq. (7.6) via integration over energy, i.e.

Φcam(E, rs) =

∫
φcam(E, rs)dE (7.7)

Figure 7.4 shows the result of performing the operation in Eq. (7.6) on the two

quantum efficiency spectra. The solid lines represent both, the external quantum

efficiency Qe, as well as the spectrally resolved EL signal φcam(E) from the camera for

the measurement on the passivated region, while the dashed lines represent the same
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Fig. 7.4: Quantum efficiency measured on the unpassivated region (the dark band

in Fig 7.3; dashed lines) and on the passivated region (solid lines) and the resulting

wavelength resolved intensity of the camera signal, calculated with Eq. (7.6) and

normalized to the peak of the spectra on the passivated region.

two quantities for the measurement on the unpassivated back side. The integral over

the resulting curves for φcam(E) then gives the camera signal Φcam(E).

In order to check, whether the above stated proportionalities [Eqs. (7.5) and

(7.6)] really hold in experiment, I evaluate line scans of the LBIC and the EL image

in Fig. 7.3 and compare those with the quantum efficiencies Qe(λ ≈ 950 nm) and

the camera signals calculated from the quantum efficiency according to Eq. (7.6).

Figure 7.5a shows the comparison between the LBIC linescan and quantum

efficiencies taken at different positions and with different spot sizes. I made three

sets of measurements, where I varied the x-coordinate in each of the three cases in

order to get quantum efficiency measurements on the passivated and unpassivated

region. The three sets of measurements are distinguished by different symbols that

indicate different positions on the sample (squares, triangles: y ≈ 5 mm, circles y ≈
10 mm) for which the Qe measurements were made and different spot sizes (squares:

1 mm × 3 mm; circles, triangles: 2 mm × 5 mm). The qualitative agreement

between LBIC and Qe is quite good, although the contrast between the quantum
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Fig. 7.5: (a) Comparison of LBIC linescan of the image in Fig. 7.3a with quantum

efficiencies taken at 950 nm. (b) Comparison of the linescan of the EL image in

Fig. 7.3b with EL intensities calculated from quantum efficiency measurements as

shown in Fig. 7.4. The y-position of both linescans is indicated by the vertical line

in Fig. 7.3 (y ≈ 3.6 mm). The quantum efficiencies are taken in different y-ranges

(squares, triangles: y ≈ 5 mm, circles y ≈ 10 mm) and with different spot sizes

(squares: 1 mm × 3 mm; circles, triangles: 2mm × 5 mm)

efficiency measurements on the passivated and the unpassivated regions seems to be

higher than that of the LBIC linescan. Reasons for this discrepancy are the fact

that I approximated the LED spectrum by a single wavelength and compare that

with only one point of quantum efficiency measurement. Thus, noise in the quantum

efficiency date has a strong influence since no averaging is done here.

Figure 7.5b shows the EL linescan compared with the values calculated from

the same quantum efficiencies as used for comparison with the LBIC. Now, we have

to consider that there is a superposition of the effects of the quantum efficiency and
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the internal voltage on the shape of the EL-linescan. Low values of x are equivalent

to low distances from the contact, which is situated roughly at x = 0. Thus, for

increasing x, the intensity of the EL signal goes down slightly even for constant

Qe. Considering this fact, Fig. 7.5b shows a quite good correspondence between

the values Φcam,calc calculated according to the reciprocity relation between EL and

quantum efficiency and the EL intensity Φcam,meas itself.

Thus, I have shown that the reciprocity relation [Eqs. (2.33, 7.1)] is not only

of relevance for spectrally resolved EL measurements but also describes EL images

very well. However, this finding does not immediately lead to a good method to

quantify cell parameters in a spatially resolved way. Due to the intermixing of

different influences in an EL image, quantitative interpretation of data and, thus,

determination of more than one unknown, always requires an increase of the number

of equations. This has been done to get access to the diffusion length [150] and to

the series resistance [151], while the reciprocity helps us to better interpret the

results [58,59,152].

7.2.3 Interpretation of EL images taken with filters

Theory

A quantitative interpretation of the spectral component of the EL emission requires

an accurate model of all unknown spectral parts of Eq. (2.33). Since the black body

spectrum

φbb(E) =
2πE2/(h3c2)

exp (E/kT ) − 1
≈ 2πE2

h3c2
exp

{−E

kT

}
(7.8)

is a known factor that depends basically on the photon energy, I only have to model

the quantum efficiency and later multiply it by φbb. In Eq. (7.8), h is the Planck

constant and c is the speed of light. To obtain the quantum efficiency, one can either

use device simulators like ASA, AFORS-HET or PC1D, which have been developed

for use with solar cells, or apply analytical equations, which is feasible in pn-junction

solar cells under low level injection. In the following, I will discuss these analytical

equations, which were also used for all our simulations.

Modeling the quantum efficiency requires knowledge of the generation of charge

carriers in the device as well as knowledge of the collection of photogenerated carri-

ers. It is useful to write the internal quantum efficiency Qi as a function of generation
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rate g(x) and collection efficiency fc(x) as

Qi (E) =

d∫
0

g (x) fc (x) dx (7.9)

where the generation rate g(x) is defined normalized to the photon flux entering

the cell; i.e. for the simplest case of flat surfaces and no back reflections g(x) =

α exp(−αx).

Equation (2.33) is valid for the case of low level injection, where minorities can

be clearly defined. The validity of Eq. (2.33) requires the validity of the Donolato

theorem [34] relating the collection efficiency fc(x) of photogenerated carriers with

the normalized dark carrier concentration. Thus, I obtain the collection efficiency

from the solution of the diffusion equation for minorities in the dark as

fc (x) = cosh (x/L) − L

Leff

sinh (x/L) (7.10)

The calculation of the generation rate g(x) depends on the optical properties

of the device. For flat surfaces and multiple reflections at front and back surface,

the generation rate is

g (x) =
α (1 − Rf)

(
e−αx + Rbe

α(x−2w)
)

1 − RfRbe−2αd
(7.11)

For textured surfaces, the generation rate is either calculated with a ray tracing

program or the texture is approximated with perfectly Lambertian surfaces. An

analytical solution of the generation in a cell with a Lambertian front surface and a

specular back surface follows from [142] as

g (x) = 2α (1 − Rf)
[Ei2 (αx) + RbEi2 (α (2d − x))]

1 − tcell (1 − tlamb)
(7.12)

with tlamb = (1 − Rf)/n
2, where n is the index of refraction. Equation (7.12) uses

the definition

tcell = Rb

(
e−2αd(1 − 2αd) + (2αd)2Ei (2αd)

)
(7.13)

for the angle-integrated transmission of the cell from the front with one reflection

at the back side to the front. For the definition of the functions Ei and Ei2 see Eqs.

(3.13) and (3.14). Note that the defintions in Eqs. (7.12) and (7.13) are equivalent to

Eqs. (3.11) and (3.12) except for the consideration of back side reflectances Rb < 1

in the present case.
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Fig. 7.6: Simulation of quantum efficiency and electroluminescence versus wave-

length for different values of the bulk diffusion length L = 50, 100, 200, 300, 400, and

800μm.

Results and discussion

As already mentioned, the spectral shape of the EL emission depends on both re-

combination in bulk and interfaces as well as the optical properties of the device.

First, I will only concentrate on recombination and assume the optical properties

to be known. In a second step, I will show how to distinguish between both optical

and electrical properties. For all cases, I will concentrate on the following relevant

parameters: bulk diffusion length L, surface recombination velocity S of the back

side, reflection coefficient Rb of the back side and thickness d of the base, which is

assumed to be identical to the total optical thickness. For simplicity, I assume for

all simulations that the front side reflectance is zero for all wavelengths and, thus,

do no longer distinguish between internal and external quantum efficiency. In the

following, I will thus speak of the quantum efficiency Q = Qi = Qe. For interpreta-

tion of real measurements, the front side reflectance has to be measured separately

and must be taken into account for simulations.

Figure 7.6 shows the simulated quantum efficiency and EL for different values
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of the bulk diffusion length L = 50, 100, 200, 300, 400, and 800 μm, respectively.

The other parameters used are S = 1000 cm s−1, d = 200μm, Rb = 0.8. The curves

for the EL follow from the application of Eq. (2.33), i.e. the quantum efficiencies

are first multiplied by the black body spectrum and then normalized to the peak

for the highest diffusion length. We see a wavelength dependence of the influence

the diffusion length has on both Q and EL. We also notice the dramatic decrease

of EL intensity for the shorter wavelengths. For instance around 900 nm, where

the quantum efficiency is usually evaluated to extract the effective diffusion length,

the total intensity is around four orders of magnitude below the peak. Using the

spectral information in the low wavelength regime will thus always have the downside

of longer data acquisition times.

To access the spectral information with a camera, I have to use a limited

number of filters and evaluate the contrast of measurements with and without a

certain filter or combination of filters. I define the contrast Cs obtained from the

ratio of two images taken with different step-function like short pass filters as

Cs

(
Ecut,1 =

hc

λcut,1

, Ecut,2 =
hc

λcut,2

)
=

∞∫
hc/λcut,2

φemQCCDdE

∞∫
hc/λcut,1

φemQCCDdE

(7.14)

where QCCD is the sensitivity of the camera and λcut,i is the cut wavelength for the

ith filter.

Figure 7.7 shows how the information about the different diffusion lengths

influences the contrast as defined in Eq. (7.14). Figure 7.7a depicts the EL spectra

of the highest - L = 800μm - and lowest - L = 50μm - diffusion length from Fig. 7.6

but now normalized to their respective peaks. The spectrum for L = 800μm (solid

line) has a steeper slope on the low wavelength side than the spectrum for L = 50μm

(dashed lines). It is this difference in slope that I want to detect with a filter. The

absolute difference between the curves with different diffusion lengths, which was

depicted in Fig. 7.6, cannot be used, since it affects the absolute EL emission just

like changes in voltage. In addition, Fig. 7.7a shows the camera sensitivity, which

is (taken from Ref.) and extrapolated with an absorptance of flat crystalline silicon

to have data also for longer wavelengths.

However, it is not the EL spectrum in Fig. 7.7a that determines the output
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Fig. 7.7: (a) EL spectra for the diffusion lengths L = 50μm (dashed line) and

L = 800μm (solid line), both normalized to their respective peak. The relative dif-

ference in slope on the short wavelength side needs to be detected by the use of filters.

Camera sensitivity as a function of wavelength (dotted line). (b) Multiplication of

EL spectra with the camera sensitivity. (c) Integration of EL spectra in (b) from

short wavelengths up to the cut wavelength of a filter as a function of this cut wave-

length. The result is normalized to the integral over the total spectrum (without filter)

and thus the normalized integral approaches unity for high wavelengths. The filter

is assumed to have a step-function-like transmission (i.e. all wavelengths λ = λcut

pass the filter).
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of the camera, but instead the multiplication of the spectra in Fig. 7.7a with the

camera sensitivity QCCD in the same figure. Figure 7.7b shows the result of this

multiplication. Due to the decreased camera sensitivity for long wavelengths, the

resulting spectra pronounce the short wavelength part stronger compared to the

original spectra.

If I now introduce a short pass filter with cut wavelength λcut, the actual signal

of the camera, will be the integral
∫

∞

hc/λcut
φemQCCDdE. Figure 7.7c shows this integral

as a function of cut wavelength normalized to the integral over the whole spectrum

from Fig. 7.7b. According to the definition of the contrast in Eq. (7.14), the curves

in Fig. 7.7c are equivalent to the inverse contrast for the case where one short pass

filter is used for the first image and the other image is taken without filters, i.e. for

the case Cs(hc/λcut,1, 0). Note here that the contrast is defined in a way that it is

always larger than one and thus in the same way as in Ref. [150].

Figure 7.8a shows the contrast as a function of the cut wavelength λcut,1 for the

EL spectra in Fig. 7.6. The most obvious result of Fig. 7.8a is the steep increase of

the absolute contrast for decreasing wavelength. This implies that the denominator

of Eq. (7.14) becomes very small for short cut wavelengths and thus the signal to

noise ratio for the filtered image becomes very low. However, I am not interested in

the absolute contrast Cs but instead in the relative change in contrast induced by

the change in diffusion length.

In order to better highlight these relative changes, I introduce the normalized

contrast Csn. Figure 7.8b shows Csn, normalized to the absolute contrast of the cell

with the highest diffusion length L = 800 mm. The normalized contrast is more

sensitive to changes in diffusion length, when the cut wavelength gets shorter; i.e. a

compromise must be made between signal to noise ratio and selectivity.

The right choice of the cut wavelength will depend on the signal to noise ratio

and the tolerable duration of the measurement. A shorter measurement time with a

filter with a higher cut wavelength will lead to less accuracy in the determination of

the recombination parameters. Thus, I cannot give a general answer to the question

for the perfect filter wavelength; however, I show how to estimate or simulate the

effects, which may help to find the optimal filter for a given sample and setup.

Now, I will consider two unknowns, the bulk diffusion length and the back side

reflection and assume a Lambertian generation profile. I choose a matrix of two bulk
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Fig. 7.8: Simulation of (a) contrast and (b) normalized contrast of two images,

where one is taken without filter and the other with a short pass filter with a cut

wavelength λcut. The filter is assumed to have a step-function-like transmission (i.e.

all wavelengths λ = λcut pass the filter). Parameters are a diffusion length L = 50,

100, 200, 300, 400, and 800μm, a surface recombination velocity S = 1000 cm/ s, a

back reflectance Rb = 0.8 and a thickness d = 200μm.

diffusion lengths L = 200μm and L = 400μm as well as two back side reflections

Rb = 0.6 and 0.8, while keeping S = 1000 cm s−1 and the thickness d = 200μm

constant. Figure 7.9a shows the corresponding situation for the normalized contrast

with only one short pass filter. Figure 7.9a clearly reveals that it is challenging to

distinguish between optics and recombination with only one filter.

This situation greatly improves if I follow the scheme of Ref. [150] and use a
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Fig. 7.9: Normalized contrast for the case of variable diffusion length L and back

side reflectance Rb for the case of (a) one short pass filter or (b) two short pass

filters with the higher wavelength filter being used for both measurements. The effect

of the second filter makes the result nearly independent of the back side reflectance.

Parameters are a diffusion length L = 200 and 400μm, a back reflectance Rb =

0.6 and 0.8, a surface recombination velocity S = 1000 cm/ s and a thickness d =

200μm.

second short pass filter around 1000 nm for the measurement that was done without

filter before. Figure 7.9b shows this situation for a variable value of the first cut

wavelength, keeping the cut wavelength of the second filter constant at 1000 nm.

The effect of the different back side reflections vanishes. However, the selectivity

-i.e. the change in normalized contrast between two diffusion lengths - decreases
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considerably with the introduction of the second filter.

Thus, I again have the need to make a compromise in choosing the second filter.

The cut wavelength should be high enough for a good contrast and low enough for

a sufficient suppression of light trapping effects. The value λcut = 1000 nm, which

is chosen here, corresponds to a penetration depth Lα roughly 1.3 times the cell

thickness d. Simulations with other cell thicknesses and reflection coefficients Rb

showed that a value of Lα/d = 1 to 1.5 is quite reasonable for a wide range of

thicknesses and nearly independent of the value of Rb.

Since I am able to simulate the EL emission for all wavelengths, I also try to

exploit any information about light trapping, contained in the spectrum. For this

purpose, it is helpful to choose long pass filters, instead of short pass filters. I define

the contrast Cl obtained from the ratio of two images, where one is taken with a

long pass filter as

Cl

(
Ecut =

hc

λcut,1

)
=

∞∫
0

φemQCCDdE

hc/λcut∫
0

φemQCCDdE

(7.15)

where λcut is the cut wavelength for the long pass filter.

How does the contrast Cl give information about the light trapping? To answer

this question, I again go step by step from the spectra to the contrast. Figure 7.10a

shows EL spectra for two back reflectances Rb = 0.6 (dashed line) and Rb = 0.8 (solid

line). The other parameters are L = 400μm, S = 1000 cm s−1 and the thickness

d = 200μm. In contrast to Fig. 7.7a the spectra are now not normalized to the

peak. Multiplication of the spectra in Fig. 7.10a with the camera sensitivity in Fig.

7.10a gives the spectra in Fig. 7.10b that control the camera signal. It is obvious

that the difference between the two spectra with difference back side reflectances

affects the spectra on their high wavelength sides. Thus, in order to detect these

differences with a filter, I need to choose filters with higher wavelengths and inverse

behaviour, i.e. long pass filters.

Figure 7.10c shows the result of solving the integral
∫ hc/λcut

0
φemQLEDdE as a

function of λcut and normalizing it to the integral over the whole spectrum. It

is obvious that the differences between the spectra in Fig. 7.10b are still visible

after the integration carried out by the camera pixels if a long pass filter with cut
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Fig. 7.10: (a) EL spectra for two back reflectances Rb = 0.6 (dashed line) and

Rb = 0.8 (solid line). The other parameters are L = 400μm, S = 1000 cm/ s

and the thickness d = 200μm. In contrast to Fig. 7.7a the spectra are now not

normalized to the peak. (b) Multiplication of the spectra in (a) with the camera

sensitivity in (a). (c) Result of solving the integral
hc/λcut∫

0

φemQCCDdE as a function

of λcut and normalizing it to the integral over the whole spectrum.



144 CHAPTER 7. EXPERIMENTAL APPLICATIONS

Fig. 7.11: Normalized contrast for the case of a long pass filter with varying cut

wavelength. In this case, different values of the back surface reflectance Rb lead to a

pronounced contrast for cut wavelengths λcut > 1150 nm whereas different values of

the effective diffusion length Leff have no influence.

wavelengths above 1000 nm is used. The inverse of the spectra in Fig. 7.10c gives

the contrast Cl (not shown) and from that the normalized contrast follows in the

same way as for short pass filters.

Figure 7.11 shows this normalized contrast for the four parameter combinations

also used in Fig. 7.9: Rb = 0.6 and 0.8 and L = 200μm and 400μm. Since I have

defined the contrast in a way that it is always larger than one, the curve with high

Rb and L is now at the bottom and a decreasing quality of light trapping, i.e. a

smaller Rb, leads to higher absolute contrast. The difference between Rb = 0.6

and 0.8 becomes pronounced already at cut wavelengths λcut = 1050 nm, which is

around the typical peak position in detected emission of Si CCD cameras. Thus,

the evaluation of light trapping will not require long data acquisition times.

Up to now, I only considered variations of the bulk diffusion length and back

side reflection. However, as for the quantum efficiency, the effects of surface and

bulk recombination are closely intermixed. Thus, Fig. 7.12 shows the meaning of

the absolute contrast for the example of one short pass filter with the cut wavelength

λcut = 900 nm in terms of possible combinations of surface recombination velocity S
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Fig. 7.12: Possible combinations of surface recombination velocity S and diffusion

length L that lead to a certain contrast when applying a short pass filter with a cut

wavelength λcut = 900 nm.

and bulk diffusion length L leading to the same contrast value. It is obvious that

rather large variations of both S and L are possible. Only for high quality bulk

material (L >> d), S is determined accurately.

The question remains, whether a combination of measurements can help us

to distinguish between recombination in the bulk and at the surface. For quantum

efficiency measurements this is possible, when comparing the first and second linear

regime in the plot of inverse internal quantum efficiency versus penetration depth

[153,154]. The first linear regime gives information about Leff defined by

Leff = L
S sinh(d/L) + D/L cosh(d/L)

S cosh(d/L) + D/L sinh(d/L)
(7.16)

while the spectral region for longer absorption lengths depends on the average col-

lection probability (cf. Eq. (7.3))

fc =
1

d

d∫
0

fc (x) dx =
L

d

S (cosh (d/L) − 1) + D/L sinh(d/L)

S sinh(d/L) + D/L cosh(d/L)
(7.17)



146 CHAPTER 7. EXPERIMENTAL APPLICATIONS

Fig. 7.13: Lines of equal Leff and fc for the case of L = 400μm and S = 1000 cm/ s

as well as two lines of equal contrast for two different combinations of short pass

filters. Independent determination of S and L is more difficult with EL than with

quantum efficiency measurements since the angle between the curves with different

filters is much smaller than the one between Leff and fc.

For high absorption lengths, the photogeneration becomes uniform and the

collection probability of the generated charge carriers independent of thickness. The

two different combinations of S and L as defined by Eqs. (7.16) and (7.17) allow to

distinguish S and L if both Leff and fc have an intersection in the (S, L)-plane. A

similar approach is in principle possible, combining the EL measured with different

filters with each other.

Figure 7.13 shows both the intersection of Leff and fc and of the EL with two

different combinations of short pass filters. For the chosen parameter combination

S = 1000 cm s−1 and L = 400μm = 2d, it is difficult to find two filter-combinations

that do not lead to nearly parallel curves. Although the intersection is clearly visible

in the simulation, for experimental purposes the curves are probably not linearly

independent enough. Both EL curves resemble the case for fc. Thus the approach of

Bothe et al. [155] to use light beam induced current (LBIC) measurements for getting
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local values for Leff will lead to clearer results, if the injection level dependence of

recombination is not too strong.

7.2.4 Absolute EL emission and the LED quantum efficiency

The reciprocity theorem, Eq. (2.33), does not only contain information about pho-

tovoltaic properties, following from the emission, but also information about the

quality of a solar cell if operated as LED. The reciprocity theorem constitutes a

connection between EL emission and the short circuit situation of a solar cell. This

leads to a more general question that was already mentioned in chapter 2.4: Is a

good solar cell necessarily a good LED? Green et al. [156] showed that the same

device geometry gives both the highest efficiency solar cells and the best silicon

LEDs. Of course, the long radiative lifetimes of the indirect semiconductor silicon

are a severe problem for the application as light source but no obstacle for photo-

voltaic use. However, as the quantum efficiency and thus the short circuit situation

gives information about the EL spectrum, the open circuit situation is linked to

the absolute intensity of the emitted light. I quantify the latter by the LED quan-

tum efficiency as defined by Eq. (2.42) i.e. the ratio of radiative Jrad to total - i.e.

radiative and non-radiative - recombination currents Jnr + Jrad. The link between

the LED quantum efficiency and the open circuit voltage of a solar cell has already

been introduced in Eq. (2.41). The link between the radiative saturation current

density J0,rad and the solar cell quantum efficiency directly results from the spectral

reciprocity, Eq. (2.33), if one considers that the radiative recombination current

must equal - as a particle current - the emission of light from the solar cell under

applied bias, i.e. J0,rad/q = φem/(exp(qV/kT ) − 1) (see also Eq. (2.38)).

To predict the LED performance from solar cell properties, I need the ac-

tual and the radiative open circuit voltage. For high quality silicon solar cells, the

pathlength enhancement is the most important factor determining the quantum

efficiency around the band gap and thus the radiative recombination current den-

sity and the radiative open circuit voltage. I therefore approximate the solar cell

quantum efficiency by the absorptance [68,157]

a(E) =
1

1 + 1
αkeffd

(7.18)
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Fig. 7.14: External LED quantum efficiency as a function of the open circuit volt-

age. The measurements (squares) of randomly textured mono-crystalline silicon so-

lar cells are compared with the predictions (lines) for different pathlength enhance-

ment factors keff. Most of the devices with higher Voc show agree with the theoretical

prediction when pathlength enhancement factors 10 < keff < 20 are assumed, which

is agreement with the finding of Fig. 7.2 where the shown randomly textured device

had a keff ≈ 13.

using an approximation for textured surfaces. Inserting the absorptance given by

Eq. (7.18) instead of the solar cell quantum efficiency into Eq. (2.40) leads to a

radiative open circuit voltage as a function of the light trapping properties. Sub-

sequently, I measure both open circuit voltages and LED quantum efficiencies of

several textured mono-crystalline solar cells and compare them to the predictions

for different pathlength enhancement factors.

Figure 7.14 shows the relation between experiment and theory. The high qual-

ity samples are all within the typical range of keff = 10 to 20 that corresponds to

our investigations with the EL spectra. Some of the lower quality samples seem to

have even better light trapping. However, this effect is caused by strongly decreased

quantum efficiencies, implying that our initial assumption Qe(E) = a(E) is no longer
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valid. Overestimations of the solar cell quantum efficiencies thus lead to underesti-

mations of the radiative open circuit voltages and consequently to overestimations

of the LED quantum efficiencies.

Figure 7.14 also shows, which LED quantum efficiencies can be reached with

solar cell technology. The crystalline silicon solar cells with the highest open circuit

voltages Voc = 712 mV [158] are the HIT cells from Sanyo. According to the calcu-

lations in Fig. 7.14, solar cells with such a Voc and a perfect light trapping scheme

approaching the Yablonovitch limit of keff = 4n2 ≈ 50 have the potential to reach a

quantum efficiency of QLED = 1.3%.

7.3 Cu(In,Ga)Se2

7.3.1 Introduction

Solar cells made from the quaternary alloy Cu(In,Ga)Se2 have achieved efficiencies

η > 19% [159]; i. e. more than any other thin film approach despite of the polycrys-

tallinity of the material. One commonly used characterization tool for photovoltaic

absorber materials is the analysis of the photoluminescence, e. g., for the study of

defect related properties. Photoluminescence measurements are mostly performed

as a function of the position on the sample, i.e. spatially resolved [160–163], or

as a function of the energy of the emitted photons [162–170]. Photoluminescence

allows characterizing deposited films as well as completed solar cells in a contactless

manner. Bauer et al. [164] even showed how to extract the maximum attainable

open circuit voltage from absolute photoluminescence measurements. The elec-

troluminescence (EL) of CuInSe2 has been subject to fundamental studies in the

1970s [167, 171–173], where the material was considered for application as emitter

and detector in optical communication.

However, as shown for crystalline silicon before, EL measurements are a valu-

able tool also for solar cell characterization. The experimental part starts with dis-

cussion of EL-spectra recorded in the temperature range 100 K < T < 300 K. They

help to investigate, how the dominant radiative recombination path changes over

temperature. Injection level dependent measurements allow to identify the charac-

ter of the peaks in the spectrum. In a second step, I show that the temperature
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dependence of the band to band peaks reveals information about the inhomogeneity

of the band gap. These inhomogeneities are partly due to an intentional grading

of the band gap versus depth, aiming at a better carrier collection, and partly due

to lateral changes in the Ga-content which strongly influence the local band gap.

Mattheis et al. [174] have developed a theory, describing the influence of a Gaussian

distribution of band gaps on the emission spectrum. I show that with small refine-

ments to this theory, the standard deviation σg of the band gap inhomogeneities

follows from the electroluminescence spectra. The extracted values are low, i.e. in

the range of 15 meV < σg < 27 meV. These values are comparable to those expected

from band gap gradings [174], which indicates that the lateral inhomogeneity might

actually be rather low in these high-efficiency devices. In a third step, I apply the

reciprocity theorem between electroluminescent emission and quantum efficiency of

a solar cell [35] to the room temperature measurements. I define an experimental, ra-

diative open circuit voltage, considering the actual radiative recombination current

- as measured with electroluminescence - and compare it to both, the actual open

circuit voltage as well as the ideal, Shockley-Queisser (SQ) open circuit voltage [30].

The difference between the SQ-limit and the radiative open circuit voltage is the loss

due to a broadened band edge [175], while the difference between the radiative and

actually measured open circuit voltage gives information on the light emitting diode

(LED) quantum efficiency. I show how to connect the LED quantum efficiency with

the open circuit voltage of the solar cell. It turns out that the Cu(In,Ga)Se2 solar

cells have LED quantum efficiencies approaching QLED = 0.1%.

7.3.2 Experiments

The investigated samples are high efficiency Cu(In,Ga)Se2 solar cells, fabricated by

a three stage process [176] that enables efficiencies η > 19% (on a cell area of 0.5

cm2) [177]. In the following, I will briefly outline the three stage process used for

these samples: After evaporation of the 1.5 μm thick Mo back contact on a glass

substrate, the absorber depostion starts with the first stage, namely the evaporation

of In, Se, and Ga at a substrate temperature T = 400◦ C. At the end of the first

stage, the substrate temperature is increased to T ≈ 610◦ C and the Cu evaporation

is started. The evaporation of In and Ga is slightly decreased while the Se rate is
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kept constant throughout the whole process. At the end of stage two, the substrate

temperature stays constant, the Cu evaporation decreases again, and the In and Ga

evaporation increases to a level slightly below stage one. After stage three, the Se

rate stays constant until the substrate has cooled down to 300◦ C. Reference [177]

describes further details of the processing.

The three samples investigated in this article have a comparable band gap

but strongly different open circuit voltages and efficiencies, which are reflected in

different EL spectra. The values of the band gap Eg, as extrapolated from quantum

efficiency measurements, the Ga-content x = [Ga]/[In + Ga] obtained from energy

dispersive X-ray analysis (EDX), and cell parameters are given in Table 7.1. Note

that both, band gap energy Eg and Ga-content x are not constant throughout the

depth and over the sample area. Therefore the values given in Table 7.1 need to be

interpreted with regard to the method used to determine them [178]. As described

in Ref. [177] the Ga-content is determined by EDX with penetration depths around

1 μm at cell thicknesses around 2.5 μm. Due to the strong grading of the band

gap versus cell depth, the minimum band gap at a point in the cell volume will be

considerably smaller than that corresponding to the extracted Ga-content. Hence

the band gap energy in Table 7.1 yields a value similar to the spatially averaged

minimum band gap where absorption starts while the Ga-content is an average over

the volume.

The electroluminescence is recorded with a liquid nitrogen cooled Ge-detector

attached to a monochromator with a 600 lines/mm-grating blazed at λ = 1000 nm.

The sample is mounted into an Oxford Cryodrive cryostat, while a Hewlett Packard

pulse generator applies a rectangular shaped periodic voltage to the sample enabling

the use of a lock-in amplifier.

7.3.3 Temperature dependent measurements

Results

Among the three investigated solar cells, sample A has the highest values for ef-

ficiency and open circuit voltage, followed by sample B, while sample C has the

lowest performance as a solar cell. However, all three can be regarded as highly

efficient polycrystalline thin film solar cells. The device quality is reflected in the
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Tab. 7.1: Band gap energy Eg (extrapolated from the quantum efficiency), Ga

content from EDX measurements, and the Shockley-Queisser-values under AM 1.5

G illumination for the saturation current density J0,SQ, short circuit current density

Jsc,SQ, and open circuit voltage Voc,SQ. These values are compared to the measured

values Jsc, Voc and to the parameters J0,rad, Voc,rad for radiative recombination in the

device as extracted from the combined electroluminescence and Qe analysis. The LED

external quantum efficiencies QLED refer to injected current densities of 200 cm−2.

The cell area of all samples is A = 0.5 cm2.

sample A sample B sample C

Eg [eV] 1.21 1.19 1.24

Ga-content x 0.40 0.39 0.43

J0,SQ[ A cm−2] at Eg 3.0 × 10−18 6.2 × 10−18 9.7 × 10−19

Jsc,SQ[ mA cm−2] at Eg 38.8 39.8 37.3

Voc,SQ[ mV] at Eg 959 941 987

J0,rad[ A cm−2] exp. 3.5 × 10−18 7.5 × 10−18 2.3 × 10−18

Voc,rad[ mV] exp. 955 935 964

Jsc[ mA cm−2] measured 31.2 31.6 29.0

Voc[ mV] measured 739 719 700

efficiency η[%] 18.2 17.4 16.1

QLED[10−4] at 200 mA cm−2 4.4 3.3 0.49

temperature dependence of the electroluminescence spectra, which are recorded in

the temperature range 100 K < T < 300 K.

In a first step, I present the measured spectra and discuss all obvious observa-

tions. Then, I look closer at the position of the peaks as a function of temperature

and identify the physical character of the recombination process by excitation current

dependent measurements. Finally, I discuss the differences between the samples.

For simplicity, Figure 7.15 shows the electroluminescence at four temperatures

(T = 120 K, 180 K, 240 K, and 300 K). As a general trend, all samples exhibit a

transition from lower peak energies at lower temperatures to higher peak energies at

higher temperatures. The differences between the samples become apparent in the
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extent of the transition range and the number of visible peaks. Figure 7.15a shows

that sample A exhibits one peak at Elow T ≈ 1.09 eV for temperature T = 120 K

and one peak around Ehigh T ≈ 1.17 eV for higher temperatures T = 240, and 300 K.

Only at T = 180 K, two contributions are distinguishable.

Figure 7.15b shows the spectra at the same temperatures (T = 120 K, 180 K, 240 K,

and 300 K) for sample B. For temperatures T = 120, 240, and 300 K, the spectra are

again dominated by one peak, while at T = 180 K, two distinct peaks are visible.

However, a closer look reveals that even at the energy of the low temperature peak

dominant at T = 120 K, a smaller shoulder remains up to room temperature. For

all temperatures, there are more than two peaks visible in the spectra.

Figure 7.15c shows that sample C has a variety of radiative transitions up to

room temperature. The low energy peak dominating the spectrum at T = 120 K

stays the most dominant up to T = 240 K and is still clearly visible at room tem-

perature. Due to the three different peaks at room temperature, the spectrum is

very broad.

For a detailed analysis, I determinded the peak energies of the spectra. Where

more than one peak is visible, I fitted those spectra to determine the peak energies.

Figure 7.16a shows the evolution of peak position versus temperature for sample

A. Below T = 120 K, the only peak is around Elow T ≈ 1.09 eV, between 160 K and

180 K two peaks are distinguishable and fitted by two Gaussians to determine the

peak positions, while above 200 K only the high energy peak is left. To identify

the character of the radiative recombination process responsible for a certain peak,

I performed injection level dependent measurements. The reason for this is the

dependence of the peak position of donor-acceptor pair recombination on injection

level [179]. The excitation level dependent measurements presented in Fig. 7.16b

show a strong blue shift of 60 meV/decade below the transition range, at T = 140 K.

Above the transition no peak shift with increasing temperature is visible. This leads

to the conclusion that the low energy transition, dominating at low temperatures,

is a donor-acceptor pair (DAP) transition, while the high energy peak is the band

to band (BB) transition.

Figure 7.17 shows the equivalent measurements for the case of sample B. The

temperature dependent peak positions presented in Fig. 7.17a show the existence

of up to four different peaks. The spectra were fitted with Lorentian peak shapes
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Fig. 7.15: Electroluminescence spectra from samples A, B, and C at the tempera-

tures T = 120 K, 180 K, 240 K, and 300 K. All samples show a clear transition from

lower peak energies at low temperatures to higher energies at high temperatures. The

intensity axis is roughly proportional to the number of photons per time and energy

interval. The spectra are offset for clarity.

instead of Gaussians to achieve a better fit. The excitation dependent measurements

shown in Fig. 7.17b were performed at T = 100, 200 and 300 K and show that

the low energy peak around features a blue shift with increasing injection current

only for the lowest temperature. This blue shift is considerably smaller than that of

sample A. Since only one peak shows a clear shift at low temperatures, unambiguous

identification of the other peaks becomes impossible with the methods used here.

The most probable interpretation is that the high energy peak is the band to band

peak (marked with BB in Fig. 7.17a), the second peak is a free to bound peak

(marked with FB in Fig. 7.17a) and the third is the donor-acceptor pair peak

(marked with DAP). The origin of the lowest energy peak being only visible at low

temperatures is not yet understood.

Figure 7.18a shows that sample C features only three peaks, which I could fit

well with Gaussians. The excitation level dependent measurements in Fig. 7.18b

show a small blue shift for the low energy peak at T = 140 K and T = 200 K. Thus,
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Fig. 7.16: (a) Dependence of the peak position in the Cu(In,Ga)Se2 electrolu-

minescence of sample A on temperature T showing a transition between donor-

acceptor pair (DAP) recombination at energies E ≈ 1.08 eV and band-to-band (BB)

recombination at E ≈ 1.16 − 1.17 eV. The data points in the transition range

160 K ≤ T ≤ 180 K are obtained by fitting two Gaussians to the experimental data.

(b) At T = 200 K the peak position of the BB recombination does not depend on

excitation current density, whereas at T = 140 K I observe the characteristic blue

shift (60 meV/decade) of a donor-acceptor pair transition.

the interpretation of the peaks as band to band, free to bound and donor-acceptor

pair follows the abovementioned suggestion for sample B.

Comparing all three samples leads to three conclusions: (i) The less efficient

cells show more peaks and especially broader spectra at room temperature. I ex-

tracted the full width at half maximum FWHM of the room temperature spectra,

which amounts to FWHM = 107, 123, 231 meV for samples A, B, and C, respec-

tively. Hence, especially sample C has a strongly broadened room temperature

spectrum with several peaks leading to a FWHM being more than two times that

of sample A. (ii) All spectra are considerably broader than one would expect from a

direct semiconductor. For low temperatures this broadening is a result of a donor-
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Fig. 7.17: (a) Dependence of the peak position in the electroluminescence of sample

B on temperature T showing up to four peaks at the different temperatures. The data

points are obtained by fitting two up to four Lorentzians to the experimental data. In

contrast to sample A, sample B has a contribution from sub-band-gap transitions up

to room temperature. (b) Excitation current dependent measurements only identify

the peak around E ≈ 1.05 eV as a DAP transition at the lowest temperature inves-

tigated (T = 100 K). For all other temperatures and energies, there is no clear blue

shift visible. The labels DAP and FB (for free to bound transitions) are therefore

suggestions rather than proven facts.

acceptor pair (DAP) transition, broadened due to potential fluctuations [180–182],

whereas at higher temperatures the broadening of a band-to-band (BB) transition

is due to lateral band gap fluctuations [174, 175, 183] and the intentional band gap

grading. (iii) The blue shift with increasing injection current is visible for all sam-

ples for the low energy peak at low temperatures. However the DAP peaks of both
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Fig. 7.18: (a) Dependence of the peak position in the electroluminescence of sample

C on temperature T showing three peaks, which are identified as donor-acceptor pair

(DAP), free to bound (FB) and band to band (BB) in order of increasing energy. The

data points are obtained by fitting up to three Gaussians to the experimental data.

The spectrum of sample C shows a contribution of several sub-band-gap transitions

up to room temperature. (b) Similar as for sample B, the excitation current depen-

dent measurements only identify the lowest energy peak at T = 140 K and 200 K as

a DAP transition, while all other transitions do not show a blue shift.

sample B and C have much smaller blue shifts (15 meV/decade for sample B and

12 meV/decade for sample C) than sample A. Explaining the exact strength of the

blue shift is an issue still to be solved.
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Interpretation in terms of compositional inhomogeneities

The temperature dependent measurements show that all samples have a very broad

luminescence at room temperature because of band gap fluctuations. Furthermore,

samples B and C have an additionally broadened luminescence, since a contribution

of sub-band-gap recombination remains up to room temperature.

The Ga-content of these Cu(In,Ga)Se2 solar cells is changed intentionally over

depth to achieve a better charge collection. In addition also lateral changes in

composition may occur, both together leading to a dependence of the band gap

on all three spatial coordinates. Since the band gap determines the peak positions

of the band to band transitions, the amount of inhomogeneity may be accessible

by electroluminescence. As introduced in Refs. [174, 175], I assume a Gaussian

distribution of band gaps centered around an average band gap Eg with a standard

deviation σg. The first order approach of a step-function-like local absorptance

aloc(E) = 0 for energies E < Eg and aloc(E) = 1 for E > Eg , as assumed in

Refs. [174,175], leads to an error-function-like global absorptance

aglob

(
E,Eg

)
=

∞∫
0

aloc (Eg) exp

(
−

[
Eg − Eg√

2σg

]2
)

dEg√
2πσg

=
1

2
erfc

(
Eg − E√

2σg

)

(7.19)

The emission spectrum follows from Kirchhoff’s law, i.e. the multiplication of the

global absorptance with the black body spectrum at the temperature of the sample.

This simple approach already reveals that the standard deviation σg is contained

twofold in the dependence of the peak energies of the band to band transition on

temperature. First, the distance between band gap and electroluminescence peak

becomes larger with larger standard deviation σg and the slope of the peak positions

versus temperature becomes steeper with higher σg. However, in order to get a de-

cent fit for the spectra, I needed to refine the model. For the absorption, I used a

square root-like absorption coefficient a above the band gap Eg and an Urbach-tail

below the band gap. The Urbach-tail was allowed to have a linearly temperature

dependent Urbach-energy EU. The two parts of the absorption coefficient were cho-

sen in a way that they are continuously differentiable. Considering these boundary
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conditions the absorption coefficient follows as

α =

⎧⎨
⎩ α0

√
E−Eg

kT
for E > Eg + EU/2

α0 exp
(
E − Eg/EU

) √
EU

2exp(1)kT
for E < Eg + EU/2

(7.20)

where k is the Boltzmann constant. The local absorptance aloc is approximated

as aloc = [1−exp(−αdeff)], where deff is an effective optical thickness. The effect that

the optical path of insufficiently absorbed light is increased by light trapping above

the cell thickness is considered by the effective thickness. The global absorptance

aglob is then

aglob

(
E,Eg

)
=

∞∫
0

aloc (Eg) exp

(
−

[
Eg − Eg√

2σg

]2
)

dEg√
2πσg

(7.21)

According to Eq. (2.33), the quantum efficiency and not the absorptance

is responsible for the shape of the electroluminescence spectrum. However, in the

present case, using the absorptance given in Eq. (7.21) and applying Kirchhoff’s law

is a good approximation. Given the fact, that the band to band peaks, as shown in

Figs. 7.16a, 7.17a, 7.18a are all well below the band gap as presented in Table 7.1,

the peak shape and position of electroluminescence spectra are mostly determined

by optical effects and not by an energy dependent collection efficiency. This is due

to the fact that for small absorption coefficients the generation rate becomes small

as well as independent of depth. The collection efficiency being a function of depth

is now independent of energy and simply a constant factor, not changing the shape

of the spectrum.

Discussion

Figure 7.19 shows the EL spectra of sample A for temperatures of T = 200 K

(circles), 240 K (triangles) and 300 K (squares) together with the fits following Eq.

(7.21. The band gap was fixed at Eg = 1.21 eV and the fit-parameters were the

standard deviation σg, the linearly dependent Urbach-tail EU(T) and the prefactor

of the absorption coefficient times the effective thickness α0deff. I fitted the spectra

at T = 200 K and 300 K at once and added the spectrum at T = 240 K to show

that the shape of this spectrum is still well approximated. The resulting values are

σg = 26.6 meV, EU(T ) = (0.034T + 7.4) meV, and α0deff = 1.043.
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Fig. 7.19: The electroluminescence spectra of sample A at temperatures T = 200 K

(circles), 240 K (triangles), and 300 K (squares). The experimental spectra are fitted

with an absorptance following Eq. (7.21) multiplied by a black body spectrum. The

resulting values for the fit parameters are σg = 26.6 meV for the standard deviation,

EU(T ) = (0.034T + 7.4) meV for the Urbach energy, and α0deff = 1.043 for the

prefactor of the absorption coefficient times the effective thickness of the device.

As shown in Figs. 7.15b,c the room temperature spectra of samples B and C

do not only consist of the single band to band peak. A fit of the whole spectra to

obtain the standard deviation of the band gap distribution is therefore not possible.

Instead, I use the information of the peak positions of the band to band peak as a

function of temperature, which were already shown in Figs. 7.16a, 7.17a, 7.18a. In

order to fit the peak positions to extract the standard deviation, I used a simpler

approach for the absorption coefficient neglecting Urbach tails. The results are

shown in Figure 7.20 together with the band to band transitions of samples A, B,

and C. The standard deviations resulting from the fit of the peak positions and the

fit of the whole spectra are nearly the same (comparing σg = 26.4 from fitting the

peak positions to σg = 26.6 from the fit of the spectra shown in Fig. 7.19). Hence,

I conclude that (i) the standard deviation σg is a rather robust parameter and (ii)

that the method of determining σg must somehow consider the fact that the band



7.3 CU(IN,GA)SE2 161

Fig. 7.20: Peak positions of the band to band transitions of samples A, B, and C as

a function of temperature. The standard deviation σg = 26.6 meV resulting from the

fit of the spectra of sample A shown in Fig. 7.19 corresponds to that (σg = 26.4 meV)

obtained from fitting only the peak positions (solid line). For samples B and C, where

the existence of sub-band-gap transitions makes the fit of the spectra difficult, I can

only use the information of the peak positions versus temperature. The resulting

standard deviations are σg = 16.6 meV (sample B) and σg = 25.0 meV (sample C).

to band peaks are several tens of meV below the band gap. From the two results of

a high standard deviation of the band gap distribution, the distance between band

gap and peak positions as well as the temperature dependence of the peaks, only the

temperature dependence of the peaks is suited for the determination of the standard

deviation.

The sub-band gap absorption, however, has to be considered by a suitably

modelled absorption coefficient. Although only a slightly more sophisticated model

with Urbach tails is capable of describing the peak shapes, a simple model already

yields a similar result, when only considering the peak positions. Due to the presence

of more than one peak in the room temperature spectra for samples B and C, only
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the simpler model is applicable. Just regarding the peak positions, the resulting

standard deviations of sample B and sample C are σg = 16.5 meV and σg = 25.0 meV,

respectively.

The low standard deviations for the three cells are of the order of the standard

deviations caused by a band gap grading as calculated in Ref. [174]. The lateral

inhomogeneity of the samples might therefore be small and the fact that the most

efficient cell (sample A) has the highest standard deviation may be only an indication

of a large, intentional grading that is a useful feature to increase carrier collection.

7.3.4 Reciprocity between electroluminescence and photo-

voltaic quantum efficiency

Theory

Again we need the two optoelectronic reciprocity relations (Eqs. (2.33) and (2.41))

for the interpretation of the EL spectra. The application of these relations in sam-

ples with graded band gaps requires additional care. Are they still valid in this

case? The reciprocity relation (Eq. (2.33)) relies on the validity of the Dono-

lato theorem connecting the carrier concentration in the dark under applied bias

with the collection efficiency of photogenerated charge carriers under illumination

[cf. Eq. (2.46)]. As shown in Ref [50], Donolato’s theorem is valid for a gener-

alized diffusive transport [184] of minority carriers with spatially fluctuating band

gaps, lifetimes, mobilities and equilibrium minority carrier concentrations. Thus,

the Donolato theorem as well as Eq. (2.33) also hold for Cu(In,Ga)Se2 solar cells.

where the Ga-content and hence the band gap change as a function of depth.

Discussion

From the band gaps as listed in Table 7.1 the cell parameters (J0,SQ, Jsc,SQ, Voc,SQ )

of a Shockley-Queisser-cell are calculated and presented in Table 7.1. The cell in

the Shockley-Queisser limit is a cell with step function like absorptance and exclu-

sively radiative recombination. The saturation current of real solar cells is different

in two respects, (i) the absorptance is not step-function like, and (ii) non-radiative

recombination exists. To distinguish, which part of the total open circuit voltage
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difference ΔV tot
oc = Voc,SQ − Voc between the open circuit voltage in the Shockley-

Queisser limit Voc,SQ and the actually measured open circuit voltage Voc is due to

which effect, I introduce the experimental radiative open circuit voltage Voc,rad. The

experimental radiative open circuit voltage answers the question of how large Voc

would be if there was only radiative recombination but the quantum efficiency was

the same as for the actual device (i.e. no step function). To determine Voc,rad, I

need to calculate the radiative saturation current density J0,rad from Eq. (2.38).

The radiative saturation current density is the integral over the properly scaled

electroluminescence spectrum. The scaling is accomplished by using the reciprocity

theorem of Eq. (2.33). The quantum efficiency calculated from the electrolumi-

nescence spectrum is compared with the directly measured quantum efficiency as

shown in Fig. 7.21 for the samples A, B, and C. Since the directly measured so-

lar cell quantum efficiency is calibrated (lines) I can adjust the quantum efficiency

from electroluminescence (squares) and subsequently determine J rad
0 . Note that

although I can calculate the product Qe(E)φbb(E) in absolute units, I cannot mea-

sure φem(E) = Qe(E)φbb(E) [exp (qV /kT ) − 1] with this approach, since the internal

voltage V is not directly accessible.

Since I know the short circuit currents from current/voltage measurements

under AM 1.5 G illumination, I am now able to compute the experimental, radiative

open circuit voltages. Table 7.1 presents the resulting values. This allows us to define

two open circuit voltage differences, namely ΔV ∗

oc = Voc,SQ − Voc,rad and ΔVoc =

Voc,rad−Voc, the latter being identical to the definition of Eq. (2.41). The broadened

luminescence leads to a broadened absorption edge and subsequently causes the

experimental radiative saturation current density to be higher than without the

broadening. This loss is measured with ΔV ∗

oc = Voc,SQ − Voc,rad. For samples A and

B, which feature only one dominant peak, this loss is only ΔV ∗

oc = 4mV (sample A)

and ΔV ∗

oc = 6mV (sample B). But for the strongly broadened luminescence of sample

C, the loss is ΔV ∗

oc = 23mV. As long as the spectrum is dominated by the band

to band transition, the determination of the standard deviation of inhomogeneous

band gaps, as carried out in section B, is in principle also possible only using ΔV ∗

oc.

Reference [175] gives a simple equation for the voltage loss ΔV inhom
oc = σ2

g

/
2kTq

caused by an inhomogeneous band gap with standard deviation σg as compared

to a sample with a homogeneous band gap. I assume that the broadening of the
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room temperature spectra is due to the inhomogeneity of the band gap - and hence,

broadening of the band to band transition - and in addition due to transitions via

levels in the band gap. Under this assumption, the open circuit voltage difference

ΔV ∗

oc will be an upper limit for the voltage loss ΔV inhom
oc . Hence I find upper limits

for the standard deviation, namely σg = 14.4 meV for sample A, 17.7 meV for sample

B and 34.6 meV for sample C. Sample B and C behave as expected, since the value

is larger than that from the temperature dependence. The difference is small for

sample B (17.7 meV to 16.5 meV) while it is significantly larger for sample C (34.6

meV to 25.0 meV). This is in accordance with the fact that the broadening due to

additional sub band gap peaks is small for sample B and pronounced for sample

C. For sample A however, the true standard deviation of the inhomogeneities as

obtained from the fits in Fig. 7.19 is σg = 26.6 meV, which is larger than the value

extracted from ΔV ∗

oc as explained above. This reminds us of the fact that the band

gap determination via an extrapolation of α2 versus energy E is not accurate enough

to determine the band gap with meV resolution. Therefore, I conclude that the

method of determining the standard deviation σg of the band gap inhomogeneities

via the voltage difference ΔV ∗

oc = Voc,SQ − Voc,rad is in principle possible but much

more error prone than the determination via the temperature dependence. However,

the value of ΔV ∗

oc is even more general than the value of the standard deviation σg,

since it also considers other sources of emission broadening that cause the radiative

open circuit voltage to decrease.

Obviously, the largest part of the total loss in open circuit voltage is caused

by non-radiative recombination, namely ΔVoc = 216mV for samples A and B and

ΔVoc = 264mV for sample C. This loss solely determines the efficiency of the de-

vice as LED. According to Eq. (2.41) we can calculate the external LED quantum

efficiency QLED at an injection current Jinj = Jsc from the voltage loss . Figure

7.22 compares these predictions with measured values of the external LED quan-

tum efficiency. For absolute optical power measurements I used a calibrated low

power optical sensor from Coherent, equipped with a Ge-detector. To calculate the

optical power from the number of detected photons, the spectrum is assumed to

be monochromatic. The Ge detector has not sufficient sensitivity to measure the

optical power from the solar cells for injection currents as low as J = 30 mA cm−2

corresponding to one sun conditions (i.e corresponding to the measured Jsc). There-
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Fig. 7.21: The electroluminescence spectra at T = 300 K (open circles) yield a recal-

culated external quantum efficiency Qe,EL (open squares), which is in good agreement

with the measured photovoltaic external quantum efficiency Qe,dir (lines). The scaling

of the electroluminescence with the quantum efficiency enables the calculation of the

radiative saturation current densities J0,rad and the radiative open circuit voltages

Voc,rad for the three cells.

fore the prediction cannot be directly checked. However, the predicted values fit

well to the measured data. Considering the uncertainties, when measuring absolute

optical power, the agreement is excellent.

It is obvious from the measurements of all three samples shown in Fig. 7.22

that the maximum LED efficiency is far above one sun conditions. The maximum

room temperature LED quantum efficiency approaches QLED = 0.1% at injection

current densities around J = 1 A cm−2.
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Fig. 7.22: External LED quantum efficiency as a function of injection current

for samples A, B, and C. The experimental values begin at current densities corre-

sponding to 2 or more suns due to the limited sensitivity of the setup for absolute

measurements. Nevertheless, the one sun predictions, derived from the open circuit

voltage and the room temperature electroluminescence spectrum, correspond well to

the experimental data. The maximum room temperature LED quantum efficiency

approaches 0.1% at injection current densities around J = 1 A cm−2.

7.3.5 Summary

I have compared the electroluminescence of three polycrystalline Cu(In,Ga)Se2 het-

erojunction solar cells with similar bandgaps but different open circuit voltages and

consequently efficiencies, indicating a difference in the electronic quality of the ab-

sorber. Temperature dependent electroluminescence measurements have revealed

that all cells feature transitions from donor-acceptor pair recombination at lower

temperature to band to band recombination at higher temperatures. However, the

less efficient cells show a longer transition range with donor-acceptor pair recombina-

tion still apparent at room temperature, while the best cell has a shallow transition

range 160 K < T < 180 K. The amount of compositional fluctuations causing an

inhomogeneity of the band gap is extracted from the temperature dependence of
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the band to band peaks. The resulting values for the standard deviation are be-

tween 16.5 and 26.6 meV. These values are comparable to the ones predicted for

strong band gap gradings, indicating that the influence of lateral inhomogeneities

may indeed be small. I use reciprocity relations between electroluminescent and

photovoltaic action of solar cells to identify the losses in open circuit voltage due to

broadened luminescence and to non-radiative recombination. Finally I am able to

predict the external LED quantum efficieny and verify our calculations experimen-

tally. The measurements show that Cu(In,Ga)Se2 solar cells reach external LED

efficiencies around .

7.4 GaInP/GaInAs/Ge-multijunction solar cells

Multi-junction solar cells based on III-V semiconductors on Ge substrate have the

highest efficiency among today’s solar cell technologies [56]. The possibility to grow

high quality semiconductor layers epitaxially on top of each other allows a better

adaptation of the absorber materials to the solar spectrum [69]. Characterization of

these devices, however, is challenging, especially for multijunction cells designed for

use in concentrator systems. For instance, the experimental access to information

about individual subcells as well as the device characteristics at high illumination

conditions is of interest yet difficult to assess with common methods.

This section introduces a method to derive the individual current/voltage

curves of all subcells in a stacked multi-junction cell by combining electrolumi-

nescence (EL) and quantum efficiency measurements. I measure the EL spectra of

a lattice mismatched Ga0.35In0.65P/ Ga0.83In0.17As/Ge solar cell at currents ranging

from 100 μA to 150 mA and over a range of wavelengths λ from 600 nm to 1800

nm. The solar cell of an area A = 0.032 cm2 was prepared by metal organic vapor

phase epitaxy [185]. The current is applied with a DC current source and the EL

emission is chopped in order to allow the use of lock-in amplifiers. The spectra are

then recorded with a Ge detector attached to a single stage monochromator and are

subsequently corrected for the relative sensitivity of the setup. Figure 7.23a shows

three exemplary EL measurements at currents I = 2, 20, and 150 mA. The spectra

feature two pronounced peaks of the direct semiconductors GaInAs (E ≈ 1.20 eV )

and GaInP (E ≈ 1.72 eV). The Ge peak is hardly visible since the sensitivity of the
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Ge detector is already low at the peak around E ≈ 0.70 eV.

The basic theoretical ingredient for our analysis is the spectral reciprocity

relation (RR) between solar cell and light emitting diode (LED) as described in

Ref. [35]. The RR relates the external solar cell quantum efficiency Qe(E) to the

spectral emission φem via

φem(E) = Qe(E)φbb(E)

[
exp

(
qV

kT

)
− 1

]
, (7.22)

where φbb is the black body photon flux, V is the internal voltage applied to the

pn-junction, and kT/q is the thermal voltage. Equation (7.22) connects the spec-

tral EL emission with two quantities of high relevance for photovoltaics: with the

quantum efficiency Qe(E) and the junction voltage V . In the following, I deter-

mine the three junction voltages Vj(j = 1, 2, 3) of the three individual subcells of

our GaInP/GaInAs/Ge stack. Therefore, I use directly measured external quantum

efficiencies Qe,dir to scale EL emission of each subcell with the help of Eq. (2.33).

Figure. 7.23b shows Qe,dir of the three subcells measured directly (using the

method described in Ref. [186]) in comparison to the quantum efficiency Qe,EL ex-

tracted from the EL spectrum taken using Eq. (7.22). For the GaInAs and GaInP

solar cells, I find a good agreement of the respective low-energy portions of Qe,dir

and Qe,EL including a part of the region where the quantum efficiency saturates.

At higher photon energies Qe,EL becomes noisy because of the low intensity of the

underlying EL signal (Fig. 7.24a). For the Ge cell, the spectral region, where Qe,dir

and Qe,EL correspond to each other is restricted to the low-energy slope whereas at

higher photon energies (E > 0.76 eV) the original EL is distorted by small amounts

of stray light. Due to the exponential energy dependence of the black body spectrum

in Eq. (7.22), the increased luminescence signal strongly affects the Qe,EL leading

to the discrepancy to Qe,dir, visible in Fig. 7.23b.

In order to determine the internal junction voltages, I have to consider the

fact that the EL intensity is measured in arbitrary units, and thus reformulate Eq.

(7.22) using the Boltzmann approximation for φbb as

φem(E) = CQe(E)E2 exp

(−E

kT

)
exp

(
qV

kT

)
(7.23)

with C being an unknown energy independent proportionality factor. Solving for
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Fig. 7.23: (a) Electroluminescence (EL) spectra of the multijunction cell at three

different injection currents. (b) Comparison of the directly measured quantum effi-

ciency (lines) to the quantum efficiencies derived from the EL spectrum (symbols)

using Eq. (7.22).

the internal voltage Vj at any of the three junctions j = 1, 2, 3 leads to

Vj = VT ln (φem) + E/q − 2VT ln (E) − VT ln
(
Qj

e

) − VT ln (C) (7.24)

with VT = kT/q. Except for the constant additive term δV = VT ln (C), Eq. (7.24)

enables us to determine the voltage that internally drops over each of the three

pn-junctions.

Figures 7.24a-c show the result of performing the operation given by Eq. (7.24)

on the measured spectra of Fig. 7.24. The three spectral regions highlighted by

vertical lines in Figs. 7.24a-c correspond to the ranges, where the EL of each subcell

yields a maximum signal and where Qe,dir, j ≈ Qe,EL, j in Fig. 7.23b. Since the

internal voltages are the quasi Fermi-level splittings at the three internal junctions,
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the application of Eq. (7.24) in these regions must lead to a result for Vj being

independent of energy. This is verified by Figs. 7.24a-c.

The constant offset voltage δV is determined from a separately measured cur-

rent/voltage (J/V ) curve under about 25 suns illumination as depicted in Fig. 7.24d.

Then I adjust the sum ΣVj of the junction voltages (measured at a dark current den-

sity JD) to the open circuit voltage Voc at the illumination condition leading to the

corresponding short circuit current density Jsc = JD. Note that this scaling must

only be performed once for the total series of EL measurements because the offset

voltage δV is the same for all spectra. Adjusting the voltages to Voc and not to an

arbitrary voltage is necessary since neither the internal voltages from EL nor the Voc

contain resistive effects as any other directly measured voltages do.

Having determined the offset voltage, I can rescale the voltage axis in Figs.

7.24a-c and finally receive the internal voltages of the individual subcells, shown

in Fig. 7.24d for a wide range of injection currents. From the semilogarithmic

slope of the J/V -curves, I determine the diode quality factors nid with the relation

nid = q/kTdV/d ln(J), receiving the values nid = 1.14, 1.61, and 1.37 for the Ge,

GaInAs, and GaInP cell, respectively. Summing up the individual voltages leads to

ΣVj as a function of injection current. This curve nicely corresponds to the directly

measured J/V -curve over the whole range and not only at the point V = Voc (which

is the case by design).

Apart from measuring the internal voltages, I can also rate the quality of the

subcells from the difference between these internal voltages and their respective

radiative limits. The saturation value of the radiative recombination current of cell

j follows directly from Eq. (7.22) via [58,59]

J j
0,rad = q

∫
Qj

e(E)φbb(E)dE (7.25)

Defining the radiative open circuit voltage by V j
oc,rad = VT ln(Jsc/J

j
0,rad) allows

us to determine V j
oc,rad for each subcell. The difference ΔVoc = V j

oc,rad−Vj(J = Jsc) is

then a measure for non-radiative recombination losses in the subcell. The resulting

values at the injection current of the J/V -measurement (25 suns) are ΔVoc = 226

mV, 132 mV, and 210 mV for the Ge, GaInAs, and GaInP cell, respectively. Hence,

the GaInAs cell comes by far closest to its radiative limit.
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Fig. 7.24: (a, b, c) Relative internal voltage derived from the EL spectra of Fig. 7.23

according to Eq. (7.24) for currents I = 2 mA (open triangles), 20 mA (circles),

150 mA (squares). The dotted vertical lines indicate the spectral intervals, where

the voltages have been determined. (d) These voltages (open circles) are adjusted to

the open circuit voltage Voc (full triangle) of a current/voltage (J/V )-curve under

25 suns illumination. The solid line represents this J/V curve shifted by the short

circuit current density Jsc. I finally receive the J/V -curves of the three individual

subcells (open squares) with a correctly scaled voltage axis.

Summary

In summary, the present method allows us by combining EL and quantum efficiency

measurements not only to determine the internal voltages of stacked multi-junction

solar cells but also to evaluate the performance of each subcell with respect to the
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respective radiative limit.



Chapter 8

Conclusions and Outlook

All different types of solar cells, be it wafer based silicon, inorganic thin films or

organic bulk heterojunction solar cells, are fundamentally limited by the Shockley-

Queisser limit, which is based on the principle of detailed balance. In contrast to the

claim [28] that organic, excitonic solar cells are fundamentally different from inor-

ganic, bipolar devices, this thesis shows that a single detailed balance model can be

designed that encompasses both excitonic and bipolar solar cells. The model starts

with the idea behind the Shockley-Queisser limit, namely to balance all processes in

equilibrium according to the principle of detailed balance. The fundamental char-

acter of the Shockley-Queisser theory stems from idealizing transport and charge

separation, which are exactly those aspects of solar cells, where excitonic and bipo-

lar devices differ conceptionally from each other. By including transport, my model

is able to account for the device specific aspects of a variety of solar cells and provides

a means to determine fundamental efficiency limits as well as to simulate practical

devices with one common model.

The devices that were modelled in this thesis include all types of inorganic

solar cells, quantum dot and quantum well solar cells with some simplifications and

organic bulk heterojunction solar cells. One important candidate for future work is

the dye-sensitized solar cell. In this device, the absorbing layer is a dye attached

to a porous TiO2 layer, which acts as the electron transporting layer. The positive

charge is carried by ions in an electrolyte. Thus exchanging the continuity equation

for holes with one for ions, which may have more than one positive elementary charge

per particle, should be the main change required for the detailed balance model to

173
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cover also dye-sensitized solar cells.

The experimental part of this thesis prooved the usefulness of electrolumines-

cence measurements for characterization of different solar cells and for the deter-

mination of a variety of different parameters. In crystalline silicon solar cells, the

spatially resolved characterization of recombination and light trapping is of high

relevance. Quantum efficiency measurements provide this information. To obtain

spatial information will however be very time consuming with quantum efficiency

measurements. If one reduces the number of different wavelengths at which the

quantum efficiency is measured, light beam induced current measurements provide

spatial information with measurement times of hours. Due to the reciprocal re-

lation between electroluminescence and quantum efficiency, similar information is

also contained in electroluminescence images that take seconds or few minutes for

data acquisition. In Cu(In,Ga)Se2 solar cells the characterization of compositional

inhomogeneities is crucial, since a change in composition implies a change in band

gap, which strongly affects recombination and photocurrents. Temperature resolved

electroluminescence measurement showed that inhomogeneities in the high efficiency

cells under investigation are small and can be explained by intentional band gap

gradings over the depth of the device and not by unintentional lateral variations.

Finally electroluminescence spectra yielded the internal voltages of the individual

subcells of a multijunction solar cell. Thus, luminescence is a suitable method to

characterize cells within a stack of cells that cannot be contacted separately.

All experimentally investigated solar cells have in common that they are in-

organic pn-junction solar cells, where band to band recombination is dominates

EL emission at room temperature. Future investigations should therefore extend

these luminescence studies to pin-type solar cells, where the reciprocity is no longer

directly applicable, to solar cells where recombination via band tails dominates emis-

sion (e.g. amorphous and microcrystalline Si solar cells) and to organic solar cells.

Especially interesting is the case of organic solar cells, where photoluminescence

quenching is regarded as a means to efficiently dissociate the photogenerated exci-

ton. However, this thesis shows a clear relationship between luminescence intensity

and open circuit voltage. Thus, organic solar cells sacrifice the high luminescence

yield for enhanced exciton dissociation, due to the addition of electron accepting

materials like PCBM. Thus, electroluminescence measurements should be able to
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characterize these non-radiative recombination losses effectively.
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C. Goldschmidt, P. Löper, R. Wehrspohn, A. Gombert, F. Lederer and U.

Rau, Directional selectivity and light-trapping in solar cells, Proc. SPIE 7002,

70020A (2008)

5. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, F. Lederer, Opti-

mization of Rugate filters for ultra light-trapping in solar cells Proc. SPIE,

7002, 70020B (2008)

6. T. Kirchartz, A. Helbig, M. Hermle, U. Rau, and A. W. Bett, Characterisation

of GaInP/GaInAs/Ge solar cells with electroluminescence, Proc. of the 23rd

PVSEC Valencia (WIP Renewable Energies, Munich, 2008) p. 86

7. A. Helbig, T. Kirchartz, and U. Rau, Quantitative information of electro-

luminescence images, Proc. of the 23rd PVSEC Valencia (WIP Renewable

Energies, Munich, 2008) p. 426



180 APPENDIX A. LIST OF PUBLICATIONS



Appendix B

Curriculum vitae

Thomas Kirchartz born January 14th, 1982 in Karlsruhe, Germany

Education

1988-1989 Ernst-Reuter Schule, Karlsruhe

1989-1992 Schalksburgschule, Albstadt

1992-2001 Gymnasium Ebingen

6/2001 Abitur

10/2001-6/2006 Studies of Electrical Engineering and Information Technology

at the University Stuttgart

9/2003 Vordiplom

10/2003-6/2006 Hauptstudium, main subject: micro- and optoelectronics

12/2005-6/2006 Diploma thesis at the Institute of Physical Electronics

Title: ”Reciprocity between electroluminescent

emission and photovoltaic action in solar cells”

6/2006 Diploma at the University Stuttgart

Internships

7/2001-9/2001 Internship at effeff Fritz Fuss GmbH in Albstadt

6/2005-11/2005 Internship at RWE Schott Solar in Alzenau, Germany,

Billerica, Massachussetts, and Tampa, Florida

Professional Experience

7/2006-6/2007 PhD student at the Institute of Physical Electronics

7/2007-now PhD student at the IEF5-Photovoltaics

181



182 APPENDIX B. CURRICULUM VITAE



Bibliography

[1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys. 25,

676 (1954).

[2] M. A. Green, Solar Cells - Operating Principles, Technology and System

Applications (University of New South Wales, Sydney, 1986). p. 103.

[3] D. Ginley, M. A. Green, and R. Collins, MRS Bulletin 33, 355 (2008).

[4] N. S. Lewis, Science 315, 798 (2007).

[5] R. F. Service, Science 319, 718 (2008).

[6] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

[7] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science

270, 1789 (1995).

[8] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science

258, 1474 (1992).

[9] H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

[10] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct.

Mater. 11, 15 (2001).

[11] F. Yang, M. Shtein, and S. R. Forrest, Nat. Mater. 4, 37 (2005).

[12] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E.

Markov, Adv. Mater. 19, 1551 (2007).

183



184 BIBLIOGRAPHY

[13] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R.

Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha,

and M. Ree, Nat. Mater. 5, 197 (2006).

[14] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen,

M. Dante, and A. J. Heeger, Science 317, 222 (2007).

[15] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger,

and G. C. Bazan, Nat. Mater. 6, 497 (2007).

[16] S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons,

A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca, and

D. Vanderzande, Sol. Energy Mat. Sol. Cells 92, 753 (2008).

[17] B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

[18] M. Grätzel, Nature 414, 338 (2001).

[19] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,

T. Sekiguchi, and M. Grätzel, Nat. Mater. 2, 402 (2003).

[20] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang,

Nat. Mater. 4, 455 (2005).

[21] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi,

H. Miura, S. Ito, S. Uchida, and M. Grätzel, Adv. Mater. 17, 813

(2005).

[22] J. Schrier, D. O. Demchenko, L.-W. Wang, and A. P. Alivisatos,

Nano Lett. 7, 2377 (2007).

[23] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, Science

310, 462 (2005).

[24] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425

(2002).

[25] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. N. Yang, and R. A. J.

Janssen, J. Phys. Chem. B 109, 9505 (2005).



BIBLIOGRAPHY 185

[26] R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).

[27] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissörtel, J. Sal-
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