000009390 001__ 9390
000009390 005__ 20240711101512.0
000009390 0247_ $$2DOI$$a10.1016/j.jpowsour.2010.03.030
000009390 0247_ $$2WOS$$aWOS:000277868600020
000009390 037__ $$aPreJuSER-9390
000009390 041__ $$aeng
000009390 082__ $$a620
000009390 084__ $$2WoS$$aElectrochemistry
000009390 084__ $$2WoS$$aEnergy & Fuels
000009390 1001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b0$$uFZJ
000009390 245__ $$aInfluence of anode thickness on the power output of solid oxide fuel cells with (La,Sr)(Co,Fe)-type cathode
000009390 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2010
000009390 300__ $$a5340 - 5343
000009390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009390 3367_ $$2DataCite$$aOutput Types/Journal article
000009390 3367_ $$00$$2EndNote$$aJournal Article
000009390 3367_ $$2BibTeX$$aARTICLE
000009390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009390 3367_ $$2DRIVER$$aarticle
000009390 440_0 $$03727$$aJournal of Power Sources$$v195$$x0378-7753$$y16
000009390 500__ $$aRecord converted from VDB: 12.11.2012
000009390 520__ $$aThe influence of the thickness of the anode (functional layer) on the power output of anode-supported solid oxide fuel cells with a lanthanum-strontium-cobalt-ferrite cathode was investigated. The anode was applied by vacuum slip casting and the thickness varied between 1 and 22 mu m. All other material and microstructural parameters were kept constant. Single cells with dimensions of 50 mm x 50 mm and with an active cathode area of 40 mm x 40 mm were manufactured and tested in an alumina housing with air as oxidant and hydrogen with 3% water vapour as the fuel gas.Results have shown that SOFCs with anodes between 1 and 13 mu m have slightly better performance than those with thicker anodes (similar to 1.7A cm(-2) versus 1.5 A cm(-2) at 800 degrees C and 0.7 V). The current densities were discussed with respect to cell area specific resistance, helium leak rate of the half-cell, and microstructure. (C) 2010 Elsevier B.V. All rights reserved.
000009390 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000009390 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000009390 588__ $$aDataset connected to Web of Science
000009390 650_7 $$2WoSType$$aJ
000009390 65320 $$2Author$$aSOFC
000009390 65320 $$2Author$$aLSCF cathodes
000009390 65320 $$2Author$$aPower density
000009390 65320 $$2Author$$aHe leak rate
000009390 7001_ $$0P:(DE-Juel1)VDB20698$$aHaanappel, V. A. C.$$b1$$uFZJ
000009390 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2010.03.030$$gVol. 195, p. 5340 - 5343$$p5340 - 5343$$q195<5340 - 5343$$tJournal of power sources$$v195$$x0378-7753$$y2010
000009390 8567_ $$uhttp://dx.doi.org/10.1016/j.jpowsour.2010.03.030
000009390 8564_ $$uhttps://juser.fz-juelich.de/record/9390/files/FZJ-9390_PV.pdf$$yRestricted$$zPublished final document.
000009390 909CO $$ooai:juser.fz-juelich.de:9390$$pVDB
000009390 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000009390 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000009390 9141_ $$y2010
000009390 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009390 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000009390 9201_ $$0I:(DE-Juel1)VDB811$$d30.09.2010$$gIEF$$kIEF-3$$lBrennstoffzellen$$x1
000009390 970__ $$aVDB:(DE-Juel1)119094
000009390 980__ $$aVDB
000009390 980__ $$aConvertedRecord
000009390 980__ $$ajournal
000009390 980__ $$aI:(DE-Juel1)IEK-1-20101013
000009390 980__ $$aI:(DE-Juel1)IEK-3-20101013
000009390 980__ $$aUNRESTRICTED
000009390 981__ $$aI:(DE-Juel1)ICE-2-20101013
000009390 981__ $$aI:(DE-Juel1)IMD-2-20101013
000009390 981__ $$aI:(DE-Juel1)IEK-1-20101013
000009390 981__ $$aI:(DE-Juel1)IEK-3-20101013