001     9390
005     20240711101512.0
024 7 _ |2 DOI
|a 10.1016/j.jpowsour.2010.03.030
024 7 _ |2 WOS
|a WOS:000277868600020
037 _ _ |a PreJuSER-9390
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Energy & Fuels
100 1 _ |a Menzler, N. H.
|b 0
|u FZJ
|0 P:(DE-Juel1)129636
245 _ _ |a Influence of anode thickness on the power output of solid oxide fuel cells with (La,Sr)(Co,Fe)-type cathode
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2010
300 _ _ |a 5340 - 5343
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Power Sources
|x 0378-7753
|0 3727
|y 16
|v 195
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The influence of the thickness of the anode (functional layer) on the power output of anode-supported solid oxide fuel cells with a lanthanum-strontium-cobalt-ferrite cathode was investigated. The anode was applied by vacuum slip casting and the thickness varied between 1 and 22 mu m. All other material and microstructural parameters were kept constant. Single cells with dimensions of 50 mm x 50 mm and with an active cathode area of 40 mm x 40 mm were manufactured and tested in an alumina housing with air as oxidant and hydrogen with 3% water vapour as the fuel gas.Results have shown that SOFCs with anodes between 1 and 13 mu m have slightly better performance than those with thicker anodes (similar to 1.7A cm(-2) versus 1.5 A cm(-2) at 800 degrees C and 0.7 V). The current densities were discussed with respect to cell area specific resistance, helium leak rate of the half-cell, and microstructure. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a SOFC
653 2 0 |2 Author
|a LSCF cathodes
653 2 0 |2 Author
|a Power density
653 2 0 |2 Author
|a He leak rate
700 1 _ |a Haanappel, V. A. C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB20698
773 _ _ |a 10.1016/j.jpowsour.2010.03.030
|g Vol. 195, p. 5340 - 5343
|p 5340 - 5343
|q 195<5340 - 5343
|0 PERI:(DE-600)1491915-1
|t Journal of power sources
|v 195
|y 2010
|x 0378-7753
856 7 _ |u http://dx.doi.org/10.1016/j.jpowsour.2010.03.030
856 4 _ |u https://juser.fz-juelich.de/record/9390/files/FZJ-9390_PV.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:9390
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
920 1 _ |k IEF-3
|l Brennstoffzellen
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB811
|x 1
970 _ _ |a VDB:(DE-Juel1)119094
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21