000940203 001__ 940203
000940203 005__ 20230119131358.0
000940203 0247_ $$aG:(GEPRIS)504991777$$d504991777
000940203 035__ $$aG:(GEPRIS)504991777
000940203 040__ $$aGEPRIS$$chttp://gepris.its.kfa-juelich.de
000940203 150__ $$aErkennung landwirtschaftlicher Technologieadoption und -nutzung mithilfe von Satellitendaten und self-supervised Deep Learning.$$y2022 -
000940203 371__ $$aProfessorin Dr.-Ing. Ribana Roscher
000940203 371__ $$aDr. Hugo Storm
000940203 450__ $$aDFG project 504991777$$wd$$y2022 -
000940203 5101_ $$0I:(DE-588b)2007744-0$$aDeutsche Forschungsgemeinschaft$$bDFG
000940203 680__ $$aNeue Technologien und Betriebsführungssysteme gelten als entscheidend, um die Nachhaltigkeit und Ressourceneffizienz der Landwirtschaft zu steigern. Jedoch sind unsere Datenquellen, die Auskunft darüber geben, welche Technologien in den Betrieben tatsächlich eingesetzt werden sehr begrenzt. Das macht es schwierig zu beurteilen, ob die Technologien tatsächlich die versprochenen Umwelteffekte erzielen können und schränkt unsere Möglichkeiten ein Technologiediffusion zu untersuchen und zu verstehen. Wir argumentieren, dass Satellitendaten und neuartige Deep Learning-Ansätze derzeit ungenutzte Möglichkeiten bieten, um diese Limitationen zu überwinden. Die vorhandene Literatur hat bereits gezeigt, dass anhand von Satellitendaten Technologien auf Feldebene erkannt werden können. Bislang werden diese Datensätze jedoch nicht in vollem Umfang genutzt, um das Adoptionsverhalten oder Diffusionsprozesse zu untersuchen. Die vorhandenen Datenprodukte bieten zwar erhebliches Potential, sind aber in Bezug auf die von ihnen abgedeckten Regionen/Technologien begrenzt. Eine Ausweitung auf andere Regionen/Technologien ist nur begrenzt möglich, da für das Lernen neuer maschineller Lernmodelle oder die Erweiterung bestehender Modelle in der Regel große Mengen an gelabelten Referenzdaten (d. h. Beobachtungen mit bekannten Referenzinformationen) erforderlich sind, an denen es jedoch häufig mangelt. Die Ziele dieses Projekts sind daher zweifach. Erstens wollen wir vorhandene Datenprodukte aus Satellitendaten nutzen, um Diffusionsprozesse zu untersuchen, insbesondere die Dynamik der Adoption (“Disadoption”) und räumlich Peer-Effekte. Hier können wir einen bestehenden Datensatz für bodenschonender Bodenbearbeitung in den USA nutzen, der aus Satellitendaten abgeleitet wurde. Zweitens zielen wir darauf ab, die Anzahl der benötigten gelabelten Referenzdaten für Deep Learning-Ansätze deutlich zu reduzieren. Dazu wollen wir neuartige Lernverfahren entwickeln und insbesondere untersuchen, ob die Einbeziehung von agronomischen Domänenwissen dazu beitragen kann, die Anzahl der benötigten gelabelten Referenzdaten zu reduzieren. Wir vergleichen die entwickelten Ansätze mit den vorhandenen US-Daten und wenden sie an um neue Datenprodukte für andere Regionen (Deutschland) und Technologien (bodenschonender Bodenbearbeitung und Glyphosateinsatz) zu erstellen. Der Daten werden öffentlich zugänglich gemacht. Wir nutzen sie um die Diffusionsdynamiken von bodenschonender Bodenbearbeitung und Glyphosateinsatz in Deutschland abzuleiten, was einen wichtige Betrag für die aktuelle politische Debatte über diese Technologien liefern kann.
000940203 909CO $$ooai:juser.fz-juelich.de:940203$$pauthority$$pauthority:GRANT
000940203 980__ $$aG
000940203 980__ $$aAUTHORITY