001     941218
005     20240625095032.0
020 _ _ |a 978-3-95806-641-0
024 7 _ |2 Handle
|a 2128/33794
024 7 _ |2 URN
|a urn:nbn:de:0001-2023013111
037 _ _ |a FZJ-2023-00822
100 1 _ |0 P:(DE-Juel1)188287
|a Pazem, Josephine
|b 0
|e Corresponding author
245 _ _ |a Denoising with Quantum Machine Learning
|f - 2022-11-24
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2022
300 _ _ |a 106
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 DataCite
|a Output Types/Supervised Student Publication
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |2 BibTeX
|a MASTERSTHESIS
336 7 _ |2 DRIVER
|a masterThesis
336 7 _ |0 PUB:(DE-HGF)19
|2 PUB:(DE-HGF)
|a Master Thesis
|b master
|m master
|s 1674810196_23400
336 7 _ |2 ORCID
|a SUPERVISED_STUDENT_PUBLICATION
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Information / Information
|v 82
502 _ _ |a Masterarbeit, RWTH Aachen University, 2022
|b Masterarbeit
|c RWTH Aachen University
|d 2022
520 _ _ |a This master thesis explores aspects of quantum machine learning in the light of an application to dampen the effects of noise on NISQ processors. We investigate the possibility of designing machine learning models that can be accommodated entirely on quantum devices without the help of classical computers. With Dissipative Quantum Neural Networks, we simulate a quantum feed-forward neural network for denoising: the Quantum Autoencoder. We assign it to correct bit-flip noise in states that can exist only quantum mechanically, namely the highly entangled GHZ-states. The numerical simulations report that the QAE can recover the target states up to some tolerance threshold on the noise intensity. To understand the limitations, we investigate the mechanisms behind the completion of the denoising task with quantum entropy measures. The observationsreveal that the latent representation is key to reconstructing the desired state in the outputs. Consequently, we propose an inexpensive modification of the original QAE: the brain box-enhanced QAE. The addition of complexity in the intermediate layers of the network maximizes the robustness of the QAE in a setting where only a finite-size training data set is available. We close the argument with a discussion on the generalization properties of the network.
536 _ _ |0 G:(DE-HGF)POF4-5224
|a 5224 - Quantum Networking (POF4-522)
|c POF4-522
|f POF IV
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/941218/files/Information_82.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:941218
|p openaire
|p open_access
|p urn
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)188287
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-522
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5224
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Computing
|x 0
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a master
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21