000941239 001__ 941239
000941239 005__ 20230314201827.0
000941239 0247_ $$2Handle$$a2128/33899
000941239 037__ $$aFZJ-2023-00834
000941239 041__ $$aEnglish
000941239 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b0$$eCorresponding author
000941239 1112_ $$aPlatform for Advanced Scientific Computing Conference 2022$$cBasel$$d2022-06-27 - 2022-06-29$$gPASC'22$$wSwitzerland
000941239 245__ $$aA Circular Harmonic Oscillator Basis
000941239 260__ $$c2022
000941239 3367_ $$033$$2EndNote$$aConference Paper
000941239 3367_ $$2BibTeX$$aINPROCEEDINGS
000941239 3367_ $$2DRIVER$$aconferenceObject
000941239 3367_ $$2ORCID$$aCONFERENCE_POSTER
000941239 3367_ $$2DataCite$$aOutput Types/Conference Poster
000941239 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1678790042_1668$$xAfter Call
000941239 520__ $$aPolar coordinates are frequently used to transform 2D images appearing in 4D scanning transmission electron microscopy (4D-STEM) as the dominant feature of the ronchigram is a central spot where the undeflected electron beam hits the detector. The information of interest resides in the deviations from a circular shape of the spot. The function basis of the quantum mechanical harmonic osciallator consists of Hermite polynomials and a Gaussian envelope function for the one-dimensional problem. For the two-dimensional isotropic problem, the basis can be represented either as a Cartesian product of two 1D basis functions or in polar coordinates.A unitary transformation connects both representations. To allow fast and affordable compression of STEM images, we incorporate the Cartesian product representation as it leads to two successive matrix-matrix multiplications. This compression method is particularly suitable for single-side-band (SSB) ptychography. We present the explicit shape of the associated radial functions of a circular harmonic oscillator and compression factors in relation to computational costs for a typical SSB ptychography application.
000941239 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000941239 7001_ $$0P:(DE-Juel1)184644$$aBangun, Arya$$b1
000941239 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b2
000941239 8564_ $$uhttps://juser.fz-juelich.de/record/941239/files/poster-appendix.pdf$$yRestricted
000941239 8564_ $$uhttps://juser.fz-juelich.de/record/941239/files/poster.pdf$$yOpenAccess
000941239 909CO $$ooai:juser.fz-juelich.de:941239$$popenaire$$popen_access$$pVDB$$pdriver
000941239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b0$$kFZJ
000941239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184644$$aForschungszentrum Jülich$$b1$$kFZJ
000941239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b2$$kFZJ
000941239 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000941239 9141_ $$y2022
000941239 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000941239 920__ $$lyes
000941239 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000941239 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000941239 9201_ $$0I:(DE-Juel1)ER-C-20211020$$kER-C$$lER-C 2.0$$x2
000941239 980__ $$aposter
000941239 980__ $$aVDB
000941239 980__ $$aI:(DE-Juel1)JSC-20090406
000941239 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000941239 980__ $$aI:(DE-Juel1)ER-C-20211020
000941239 980__ $$aUNRESTRICTED
000941239 9801_ $$aFullTexts