001     941239
005     20230314201827.0
024 7 _ |a 2128/33899
|2 Handle
037 _ _ |a FZJ-2023-00834
041 _ _ |a English
100 1 _ |a Baumeister, Paul F.
|0 P:(DE-Juel1)156619
|b 0
|e Corresponding author
111 2 _ |a Platform for Advanced Scientific Computing Conference 2022
|g PASC'22
|c Basel
|d 2022-06-27 - 2022-06-29
|w Switzerland
245 _ _ |a A Circular Harmonic Oscillator Basis
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1678790042_1668
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Polar coordinates are frequently used to transform 2D images appearing in 4D scanning transmission electron microscopy (4D-STEM) as the dominant feature of the ronchigram is a central spot where the undeflected electron beam hits the detector. The information of interest resides in the deviations from a circular shape of the spot. The function basis of the quantum mechanical harmonic osciallator consists of Hermite polynomials and a Gaussian envelope function for the one-dimensional problem. For the two-dimensional isotropic problem, the basis can be represented either as a Cartesian product of two 1D basis functions or in polar coordinates.A unitary transformation connects both representations. To allow fast and affordable compression of STEM images, we incorporate the Cartesian product representation as it leads to two successive matrix-matrix multiplications. This compression method is particularly suitable for single-side-band (SSB) ptychography. We present the explicit shape of the associated radial functions of a circular harmonic oscillator and compression factors in relation to computational costs for a typical SSB ptychography application.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Bangun, Arya
|0 P:(DE-Juel1)184644
|b 1
700 1 _ |a Weber, Dieter
|0 P:(DE-Juel1)171370
|b 2
856 4 _ |u https://juser.fz-juelich.de/record/941239/files/poster-appendix.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/941239/files/poster.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:941239
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171370
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-20211020
|k ER-C
|l ER-C 2.0
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-20211020
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21