001 | 941239 | ||
005 | 20230314201827.0 | ||
024 | 7 | _ | |a 2128/33899 |2 Handle |
037 | _ | _ | |a FZJ-2023-00834 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Baumeister, Paul F. |0 P:(DE-Juel1)156619 |b 0 |e Corresponding author |
111 | 2 | _ | |a Platform for Advanced Scientific Computing Conference 2022 |g PASC'22 |c Basel |d 2022-06-27 - 2022-06-29 |w Switzerland |
245 | _ | _ | |a A Circular Harmonic Oscillator Basis |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1678790042_1668 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Polar coordinates are frequently used to transform 2D images appearing in 4D scanning transmission electron microscopy (4D-STEM) as the dominant feature of the ronchigram is a central spot where the undeflected electron beam hits the detector. The information of interest resides in the deviations from a circular shape of the spot. The function basis of the quantum mechanical harmonic osciallator consists of Hermite polynomials and a Gaussian envelope function for the one-dimensional problem. For the two-dimensional isotropic problem, the basis can be represented either as a Cartesian product of two 1D basis functions or in polar coordinates.A unitary transformation connects both representations. To allow fast and affordable compression of STEM images, we incorporate the Cartesian product representation as it leads to two successive matrix-matrix multiplications. This compression method is particularly suitable for single-side-band (SSB) ptychography. We present the explicit shape of the associated radial functions of a circular harmonic oscillator and compression factors in relation to computational costs for a typical SSB ptychography application. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
700 | 1 | _ | |a Bangun, Arya |0 P:(DE-Juel1)184644 |b 1 |
700 | 1 | _ | |a Weber, Dieter |0 P:(DE-Juel1)171370 |b 2 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/941239/files/poster-appendix.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/941239/files/poster.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:941239 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)184644 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171370 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-20211020 |k ER-C |l ER-C 2.0 |x 2 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-20211020 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|