000000942 001__ 942
000000942 005__ 20180208200829.0
000000942 0247_ $$2pmid$$apmid:21693837
000000942 0247_ $$2DOI$$a10.1088/0953-8984/20/46/465103
000000942 0247_ $$2WOS$$aWOS:000260469700004
000000942 037__ $$aPreJuSER-942
000000942 041__ $$aeng
000000942 082__ $$a530
000000942 084__ $$2WoS$$aPhysics, Condensed Matter
000000942 1001_ $$0P:(DE-Juel1)VDB60912$$aJones, R. O.$$b0$$uFZJ
000000942 245__ $$aDensity functional study of amorphous, liquid and crystalline Ge2Sb2Te5: homopolar bonds and/or AB alternation?
000000942 260__ $$aBristol$$bIOP Publ.$$c2008
000000942 300__ $$a465103
000000942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000942 3367_ $$2DataCite$$aOutput Types/Journal article
000000942 3367_ $$00$$2EndNote$$aJournal Article
000000942 3367_ $$2BibTeX$$aARTICLE
000000942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000942 3367_ $$2DRIVER$$aarticle
000000942 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v20$$x0953-8984
000000942 500__ $$aRecord converted from VDB: 12.11.2012
000000942 520__ $$aThe amorphous, liquid and crystalline phases of the phase change material Ge(2)Sb(2)Te(5) (GST) have been studied by means of density functional/molecular dynamics simulations. The large sample (460 atoms and 52 vacancies in the unit cell) and long simulations (hundreds of picoseconds) provide much new information. Here we extend our original analysis (2007 Phys. Rev. B 76 235201) in important ways: partial coordination numbers and radial distribution functions, bond angle distributions, new local order parameters, vibration frequencies, and the charges on atoms and vacancies. The valence band densities of states in amorphous and crystalline GST are compared with ones from x-ray photoemission spectroscopy. The results for the liquid phase are new and those for the crystalline phase much expanded. GST shows pronounced AB alternation (A: Ge, Sb; B: Te), especially in its amorphous phase, and ABAB squares play a central role in the amorphous to crystalline transition. We comment on earlier speculations concerning the nature of the amorphous to crystalline transition.
000000942 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000000942 588__ $$aDataset connected to Web of Science, Pubmed
000000942 650_7 $$2WoSType$$aJ
000000942 7001_ $$0P:(DE-HGF)0$$aAkola, J.$$b1
000000942 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/20/46/465103$$gVol. 20, p. 465103$$p465103$$q20<465103$$tJournal of physics / Condensed matter$$v20$$x0953-8984$$y2008
000000942 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/20/46/465103
000000942 909CO $$ooai:juser.fz-juelich.de:942$$pVDB
000000942 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000000942 9141_ $$y2008
000000942 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000942 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000000942 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000000942 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000000942 970__ $$aVDB:(DE-Juel1)101696
000000942 980__ $$aVDB
000000942 980__ $$aConvertedRecord
000000942 980__ $$ajournal
000000942 980__ $$aI:(DE-Juel1)IAS-1-20090406
000000942 980__ $$aI:(DE-Juel1)PGI-1-20110106
000000942 980__ $$aI:(DE-82)080009_20140620
000000942 980__ $$aUNRESTRICTED
000000942 981__ $$aI:(DE-Juel1)PGI-1-20110106
000000942 981__ $$aI:(DE-Juel1)VDB881