001     942
005     20180208200829.0
024 7 _ |2 pmid
|a pmid:21693837
024 7 _ |2 DOI
|a 10.1088/0953-8984/20/46/465103
024 7 _ |2 WOS
|a WOS:000260469700004
037 _ _ |a PreJuSER-942
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Jones, R. O.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB60912
245 _ _ |a Density functional study of amorphous, liquid and crystalline Ge2Sb2Te5: homopolar bonds and/or AB alternation?
260 _ _ |a Bristol
|b IOP Publ.
|c 2008
300 _ _ |a 465103
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics: Condensed Matter
|x 0953-8984
|0 3703
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The amorphous, liquid and crystalline phases of the phase change material Ge(2)Sb(2)Te(5) (GST) have been studied by means of density functional/molecular dynamics simulations. The large sample (460 atoms and 52 vacancies in the unit cell) and long simulations (hundreds of picoseconds) provide much new information. Here we extend our original analysis (2007 Phys. Rev. B 76 235201) in important ways: partial coordination numbers and radial distribution functions, bond angle distributions, new local order parameters, vibration frequencies, and the charges on atoms and vacancies. The valence band densities of states in amorphous and crystalline GST are compared with ones from x-ray photoemission spectroscopy. The results for the liquid phase are new and those for the crystalline phase much expanded. GST shows pronounced AB alternation (A: Ge, Sb; B: Te), especially in its amorphous phase, and ABAB squares play a central role in the amorphous to crystalline transition. We comment on earlier speculations concerning the nature of the amorphous to crystalline transition.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Akola, J.
|b 1
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0953-8984/20/46/465103
|g Vol. 20, p. 465103
|p 465103
|q 20<465103
|0 PERI:(DE-600)1472968-4
|t Journal of physics / Condensed matter
|v 20
|y 2008
|x 0953-8984
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/20/46/465103
909 C O |o oai:juser.fz-juelich.de:942
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)101696
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21