000009424 001__ 9424 000009424 005__ 20240619091738.0 000009424 0247_ $$2DOI$$a10.1149/1.3332806 000009424 0247_ $$2WOS$$aWOS:000276555300005 000009424 0247_ $$2ISSN$$a0013-4651 000009424 0247_ $$2ISSN$$a0096-4743 000009424 0247_ $$2ISSN$$a0096-4786 000009424 0247_ $$2ISSN$$a1945-7111 000009424 037__ $$aPreJuSER-9424 000009424 041__ $$aeng 000009424 082__ $$a540 000009424 084__ $$2WoS$$aElectrochemistry 000009424 084__ $$2WoS$$aMaterials Science, Coatings & Films 000009424 1001_ $$0P:(DE-Juel1)VDB90007$$aBorghols, W.J.H.$$b0$$uFZJ 000009424 245__ $$aLithium Storage in Amorphous TiO2 Nanoparticles 000009424 260__ $$aPennington, NJ$$bElectrochemical Society$$c2010 000009424 300__ $$aA582 - A588 000009424 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000009424 3367_ $$2DataCite$$aOutput Types/Journal article 000009424 3367_ $$00$$2EndNote$$aJournal Article 000009424 3367_ $$2BibTeX$$aARTICLE 000009424 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000009424 3367_ $$2DRIVER$$aarticle 000009424 440_0 $$03889$$aJournal of the Electrochemical Society$$v157$$x0013-4651$$y5 000009424 500__ $$aWe thank HASYLAB for the provision of beam time and the financial support of our experiments and D. Zajac and D. Novikov for their excellent support at the beam lines. The financial support from the Netherlands Organization for Scientific Research (NWO) for the VIDI grant of M. W. is gratefully acknowledged. NWO is further acknowledged for financing the solid-state NMR facility for advanced material science at the Radboud University. We thank the Alistore network for providing access to TEM measurements and the electrochemical laboratories. 000009424 520__ $$aAmorphous titanium oxide nanoparticles were prepared from titanium isopropoxide. In situ measurements reveal an extraordinary high capacity of 810 mAh/g on the first discharge. Upon cycling at a charge/discharge rate of 33.5 mA/g, this capacity gradually decreases to 200 mAh/g after 50 cycles. The origin of this fading was investigated using X-ray absorption spectroscopy and solid-state nuclear magnetic resonance. These measurements reveal that a large fraction of the total amount of the consumed Li atoms is due to the reaction of H2O/OH species adsorbed at the surface to Li2O, explaining the irreversible capacity loss. The reversible capacity of the bulk, leading to the Li0.5TiO2 composition, does not explain the relatively large reversible capacity, implying that part of Li2O at the TiO2 surface may be reversible. The high reversible capacity, also at large (dis)charge rates up to 3.35 A/g (10C), makes this amorphous titanium oxide material suitable as a low cost electrode material in a high power battery. 000009424 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0 000009424 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1 000009424 588__ $$aDataset connected to Web of Science, Pubmed 000009424 65320 $$2Author$$ananoparticles 000009424 65320 $$2Author$$aNMR spectroscopy 000009424 65320 $$2Author$$asecondary cells 000009424 65320 $$2Author$$atitanium compounds 000009424 65320 $$2Author$$aX-ray absorption spectra 000009424 650_7 $$2WoSType$$aJ 000009424 7001_ $$0P:(DE-HGF)0$$aLützenkirchen-Hecht, D.$$b1 000009424 7001_ $$0P:(DE-HGF)0$$aHaake, U.$$b2 000009424 7001_ $$0P:(DE-HGF)0$$aChan, W.$$b3 000009424 7001_ $$0P:(DE-HGF)0$$aLafont, U.$$b4 000009424 7001_ $$0P:(DE-HGF)0$$aKelder, E.M.$$b5 000009424 7001_ $$0P:(DE-HGF)0$$avan Eck, E.R.H.$$b6 000009424 7001_ $$0P:(DE-HGF)0$$aKentgens, A.P.M.$$b7 000009424 7001_ $$0P:(DE-HGF)0$$aMulder, F.M.$$b8 000009424 7001_ $$0P:(DE-HGF)0$$aWagemaker, M.$$b9 000009424 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1.3332806$$gVol. 157, p. A582 - A588$$pA582 - A588$$q157<A582 - A588$$tJournal of the Electrochemical Society$$v157$$x0013-4651$$y2010 000009424 909CO $$ooai:juser.fz-juelich.de:9424$$pVDB 000009424 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000009424 9141_ $$y2010 000009424 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0 000009424 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1 000009424 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0 000009424 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0 000009424 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1 000009424 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2 000009424 970__ $$aVDB:(DE-Juel1)119163 000009424 980__ $$aVDB 000009424 980__ $$aConvertedRecord 000009424 980__ $$ajournal 000009424 980__ $$aI:(DE-Juel1)PGI-4-20110106 000009424 980__ $$aI:(DE-Juel1)ICS-1-20110106 000009424 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000009424 980__ $$aUNRESTRICTED 000009424 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000009424 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000009424 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128 000009424 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000009424 981__ $$aI:(DE-Juel1)IBI-8-20200312 000009424 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000009424 981__ $$aI:(DE-Juel1)PGI-4-20110106 000009424 981__ $$aI:(DE-Juel1)ICS-1-20110106 000009424 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000009424 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000009424 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128