000943288 001__ 943288
000943288 005__ 20240712113111.0
000943288 0247_ $$2doi$$a10.1016/j.elecom.2022.107332
000943288 0247_ $$2ISSN$$a1388-2481
000943288 0247_ $$2ISSN$$a1873-1902
000943288 0247_ $$2Handle$$a2128/34064
000943288 0247_ $$2WOS$$aWOS:000891239800002
000943288 037__ $$aFZJ-2023-00898
000943288 082__ $$a540
000943288 1001_ $$0P:(DE-HGF)0$$aHamill, Joseph$$b0
000943288 245__ $$aSignificant two-step potential-induced surface reconstruction observed on Au(1 1 1) in aqueous sulfuric acid
000943288 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000943288 3367_ $$2DRIVER$$aarticle
000943288 3367_ $$2DataCite$$aOutput Types/Journal article
000943288 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677848983_4687
000943288 3367_ $$2BibTeX$$aARTICLE
000943288 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943288 3367_ $$00$$2EndNote$$aJournal Article
000943288 520__ $$aWe report in this communication, through in situ STM images correlated with time, and ab initio simulations of binding energies, how potential-induced surface reconstruction is formed on Au(1 1 1) single crystal in 0.1 M H2SO4. It was found that while the electrode potential after lifting the reconstructed surface is switched back to a more negative value than the potential of zero charge, the formation process of the reconstructed surface goes through two consecutive routes. In the more kinetically favorable step, and within a few minutes, the reconstructed surface follows three different lattice directions with a high proportion of semi zig-zag structures. However, by maintaining the negative applied potential, the surface reconstruction rearranges to a straighter reconstructed pattern in the second step, which is more energetically favorable.
000943288 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000943288 536__ $$0G:(BMBF)13XP5129$$aElektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)$$c13XP5129$$x1
000943288 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943288 7001_ $$0P:(DE-HGF)0$$aZhour, Kazem$$b1
000943288 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2
000943288 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b3$$eCorresponding author
000943288 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2022.107332$$gVol. 140, p. 107332 -$$p107332$$tElectrochemistry communications$$v140$$x1388-2481$$y2022
000943288 8564_ $$uhttps://juser.fz-juelich.de/record/943288/files/1-s2.0-S1388248122001345-main.pdf$$yOpenAccess
000943288 909CO $$ooai:juser.fz-juelich.de:943288$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
000943288 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000943288 9141_ $$y2023
000943288 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000943288 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943288 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHEM COMMUN : 2021$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHEM COMMUN : 2021$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:10:00Z
000943288 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:10:00Z
000943288 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943288 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000943288 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000943288 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000943288 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000943288 9801_ $$aFullTexts
000943288 980__ $$ajournal
000943288 980__ $$aVDB
000943288 980__ $$aUNRESTRICTED
000943288 980__ $$aI:(DE-Juel1)IEK-12-20141217
000943288 981__ $$aI:(DE-Juel1)IMD-4-20141217