000943307 001__ 943307
000943307 005__ 20231027114353.0
000943307 0247_ $$2doi$$a10.3390/diagnostics13030391
000943307 0247_ $$2Handle$$a2128/33768
000943307 0247_ $$2pmid$$a36766496
000943307 0247_ $$2WOS$$aWOS:000933780900001
000943307 037__ $$aFZJ-2023-00913
000943307 041__ $$aEnglish
000943307 082__ $$a610
000943307 1001_ $$0P:(DE-Juel1)178934$$aBarakat, Chadi$$b0$$eCorresponding author$$ufzj
000943307 245__ $$aAnalysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support
000943307 260__ $$aBasel$$bMDPI$$c2023
000943307 3367_ $$2DRIVER$$aarticle
000943307 3367_ $$2DataCite$$aOutput Types/Journal article
000943307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674632727_21125
000943307 3367_ $$2BibTeX$$aARTICLE
000943307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943307 3367_ $$00$$2EndNote$$aJournal Article
000943307 520__ $$aThe COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare, leading to the development of several algorithmic models for disease detection. Though these models are relatively easy to build, their training requires a lot of data, storage, and resources, which may not be available for use by medical institutions or could be beyond the skillset of the people who most need these tools. This paper describes a data analysis and machine learning platform that takes advantage of high-performance computing infrastructure for medical diagnosis support applications. This platform is validated by re-training a previously published deep learning model (COVID-Net) on new data, where it is shown that the performance of the model is improved through large-scale hyperparameter optimisation that uncovered optimal training parameter combinations. The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19: 76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights the presence of a cut-off point where the communication overhead begins to affect performance. The developed platform is intended to provide the medical field with a technical environment for developing novel portable artificial-intelligence-based tools for diagnosis support.
000943307 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000943307 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
000943307 536__ $$0G:(EU-Grant)951732$$aEUROCC - National Competence Centres in the framework of EuroHPC (951732)$$c951732$$fH2020-JTI-EuroHPC-2019-2$$x2
000943307 536__ $$0G:(BMBF)01ZZ1803M$$aSMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)$$c01ZZ1803M$$x3
000943307 588__ $$aDataset connected to DataCite
000943307 7001_ $$0P:(DE-Juel1)180916$$aAach, Marcel$$b1$$ufzj
000943307 7001_ $$0P:(DE-HGF)0$$aSchuppert, Andreas$$b2
000943307 7001_ $$0P:(DE-HGF)0$$aBrynjólfsson, Sigurður$$b3
000943307 7001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian$$b4$$ufzj
000943307 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b5$$ufzj
000943307 770__ $$aArtificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases-Volume 2
000943307 773__ $$0PERI:(DE-600)2662336-5$$a10.3390/diagnostics13030391$$n3$$p391$$tDiagnostics$$v13$$x2075-4418$$y2023
000943307 8564_ $$uhttps://juser.fz-juelich.de/record/943307/files/COVID-Net%20Paper.pdf$$yOpenAccess
000943307 8767_ $$d2023-03-09$$eAPC$$jZahlung erfolgt
000943307 909CO $$ooai:juser.fz-juelich.de:943307$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000943307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178934$$aForschungszentrum Jülich$$b0$$kFZJ
000943307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180916$$aForschungszentrum Jülich$$b1$$kFZJ
000943307 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000943307 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHáskóli Íslands$$b3
000943307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b4$$kFZJ
000943307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b5$$kFZJ
000943307 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000943307 9141_ $$y2023
000943307 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000943307 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000943307 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000943307 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000943307 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
000943307 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943307 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
000943307 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-10
000943307 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943307 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-10
000943307 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-07T16:30:38Z
000943307 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-07T16:30:38Z
000943307 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-07T16:30:38Z
000943307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIAGNOSTICS : 2022$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-26
000943307 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000943307 920__ $$lyes
000943307 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000943307 9801_ $$aFullTexts
000943307 980__ $$ajournal
000943307 980__ $$aVDB
000943307 980__ $$aUNRESTRICTED
000943307 980__ $$aI:(DE-Juel1)JSC-20090406
000943307 980__ $$aAPC