001     943307
005     20231027114353.0
024 7 _ |a 10.3390/diagnostics13030391
|2 doi
024 7 _ |a 2128/33768
|2 Handle
024 7 _ |a 36766496
|2 pmid
024 7 _ |a WOS:000933780900001
|2 WOS
037 _ _ |a FZJ-2023-00913
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Barakat, Chadi
|0 P:(DE-Juel1)178934
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674632727_21125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare, leading to the development of several algorithmic models for disease detection. Though these models are relatively easy to build, their training requires a lot of data, storage, and resources, which may not be available for use by medical institutions or could be beyond the skillset of the people who most need these tools. This paper describes a data analysis and machine learning platform that takes advantage of high-performance computing infrastructure for medical diagnosis support applications. This platform is validated by re-training a previously published deep learning model (COVID-Net) on new data, where it is shown that the performance of the model is improved through large-scale hyperparameter optimisation that uncovered optimal training parameter combinations. The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19: 76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights the presence of a cut-off point where the communication overhead begins to affect performance. The developed platform is intended to provide the medical field with a technical environment for developing novel portable artificial-intelligence-based tools for diagnosis support.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a EUROCC - National Competence Centres in the framework of EuroHPC (951732)
|0 G:(EU-Grant)951732
|c 951732
|f H2020-JTI-EuroHPC-2019-2
|x 2
536 _ _ |a SMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)
|0 G:(BMBF)01ZZ1803M
|c 01ZZ1803M
|x 3
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 1
|u fzj
700 1 _ |a Schuppert, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brynjólfsson, Sigurður
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 4
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 5
|u fzj
770 _ _ |a Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases-Volume 2
773 _ _ |a 10.3390/diagnostics13030391
|0 PERI:(DE-600)2662336-5
|n 3
|p 391
|t Diagnostics
|v 13
|y 2023
|x 2075-4418
856 4 _ |u https://juser.fz-juelich.de/record/943307/files/COVID-Net%20Paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943307
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178934
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180916
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Háskóli Íslands
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185651
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-07T16:30:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-07T16:30:38Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-07T16:30:38Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIAGNOSTICS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21